The impact of complex baryonic processes on simulated galaxy clusters

Jake Arthur, Frazer Pearce, Meghan Gray & nIFTy collaboration

Overview

- Galaxy evolution in clusters and need for simulations.
- The problems with galaxy cluster simulations.
- **nIFTy cluster comparison** most recent work.
- Future prospects: TheThreeHundred project
- Conclusions

Jake Arthur, University of Nottingham

Galaxy evolution in clusters

Modelling messy baryonic processes

Need to model **cooling** and **feedback** with **subgrid** physics

Specifically: Gas cooling/heating, Star formation, Stellar feedback, BH growth, AGN feedback

EAGLE - Schaye (2015) Jake Arthur, University of Nottingham

ILLUSTRIS - Genel (2014)

nIFTy cluster comparison

10 state-of-the-art codes simulate cluster from same initial conditions.

Code	Number of subhaloes			
	DM	NR	FP	Galaxies
G3-MUSIC	378	303	428	325
G3-MUSICPI	П	П	435	324
RAMSES	290	174	182	16
Arepo	360	243	294	76
AREPO-SH	П	П	341	220
G3-X-Art	381	356	388	262
G3-OWLS	383	327	440	307
G3-PESPH	371	328	425	273
G2-X	399	294	319	186
G3-MAGNETICUM	380	341	330	176
			ام ام	(0010)

Still large code-to-code scatter in stellar fraction between halos in infall region

Code-to-code scatter due to subgrid physics

What next for nIFTy?

The ThreeHundred Project

Data:

- 300 resimulated clusters.
- z ~ 17 -> 0, in 129 snapshots

Projects:

- Preprocessing
- Close-pairs
- Gravitational lensing
- Dynamical substructure
- Many more!

Courtesy: Gustavo Yepes

Preprocessing & defining environment

z=0

Gas particles

Finding gas environments with gas temperature and density

Cluster gas and environment evolution

Refining filament finding technique with DisPerSE

 DisPerSE (Sousbie 2011,2013) is a topology structure finder in 2D & 3D. Uses critical points and integral lines to find filaments.

Conclusions

- Simulations are useful for studying galaxy evolution in clusters, but some of their **results need to be checked** before use.
- nIFTy cluster comparison results:
 - 1. Large code-to-code scatter between codes in stellar fraction at all halo masses in both centre and infall.
 - 2. Codes **do not match trends** from halo abundance matching methods.
 - 3. Choices and calibration of **sub grid physics to blame**.
- Future prospects:

1. The ThreeHundred project

2. My interests - **preprocessing and environment** surrounding these clusters