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Introduction

❖ Galaxy clusters are the largest gravitationally bound objects in the 
Universe

❖ Cluster counts helps put important constraints on the cosmology
❖ Simulating these massive systems requires modeling complex 

physical processes like star formation, feedback, radiative cooling 
etc.



Attempt at modeling these processes
❖ Illustris simulation - 

Vogelsberger+2014
❖ 75 cMPc/h on a side box
❖ Resolution of 0.71 kpc
❖ All relevant physics - 

star formation, stellar 
feedback, AGN 
(radio+quasar) feedback, 
metal enrichment etc.

Vogelsberger+14



Attempt at modeling these processes

❖ Gas Fractions are way 
off

❖ Indicating that the 
coupling between the 
AGN feedback 
energy and the ICM is 
not modeled properly

❖ Only way to reduce 
star formation is to 
blow the gas out of 
the halo

Genel+14
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The (IllustrisTNG) AGN feedback model
❖ High accretion mode Quasar 

mode - Thermal dump of energy

❖ Low accretion mode Radio 
mode - Momentum kicks in 
random direction

❖ Half of the feedback energy that 
was initially in kinetic form is 
thermalized after 0.5 Myr.
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IllustrisTNG (300 Mpc) - Gas fractions

Pop, Hernquist, Kannan+, in prep
See also Ana-Roxana Pop’s poster

❖ ~400 clusters above 1e14 Msun - 
spatial resolution ~ 1 kpc/h

❖ Feedback is more gentle
❖ Manages to keep most of the gas in 

the halo

❖ Leads to better match with observed 
gas fractions, X- ray luminosities and 
thermal SZ signal



Barnes, Vogelsberger, Kannan+, in prep

❖ Low cool cores 
fractions 
compared to 
observations 

❖ Similar CC 
fraction as 
compared to 
Rasia+15 and 
Hahn+17 
simulations

❖ Similar problems 
in other 
simulations such 
as EAGLES

Cool core fractions



Cool core fraction evolution

Barnes, Vogelsberger, Kannan+, in prep

❖ CC fraction in good agreement with z>0.3 results

❖ Too many cool cores getting destroyed at low redshift

❖ Are we missing something?



The rich physics in the ICM
❖ The extreme temperatures and low 

density means that non traditional 
astrophysical processes become 
important 

❖ Magnetic fields
❖ Thermal Conduction
❖ Viscosity

❖ Need for efficient MHD and thermal 
conduction schemes

❖ Need high resolution in the ICM to 
resolve these processes

❖ Simulations unto now ignore these 
important processes



Thermal Conduction in clusters
Invoked by many to explain low cooling rates at the center of 
clusters(Voit+2015)

However, many studies have shown that conductive heating alone 
cannot offset cooling loses in the core (eg. Yang & Reynolds 2016a)



Thermal Conduction
❖ Diffusive transport of heat
❖                         
❖ Mainly acts in high temperature 

systems where                             as in 
clusters (will not affect Groups or 
MWs) 

❖ Magnetic fields influence the direction 
of heat flow

❖ In general cluster plasma 
❖ Conduction across field lines strongly 

suppressed
❖ Leads to anisotropic transport of heat
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Anisotropic Diffusion

Conduction across 
magnetic field is 

highly suppressed

Kannan+2016b



The AESTUS project
❖ Very high resolution simulations of a cluster (                                          ) 

with the aim of resolving and simulating all the relevant ICM physics 
using Arepo

❖ ~1000 better Mass resolution (                        )
❖ ~30 times better Spatial resolution then previous simulations with ATC 

(1 kpc/h)

❖ All the relevant galaxy formation physics such as star formation, stellar 
(Vogelsberger+2013) and AGN (Weinberger+2016; Thermal quasar 
mode + kinetic radio mode) feedback included.

❖ Better physics and high resolution compared to the large scale 
simulations such as ‘Illustris’ (Vogelsberger+14), ‘EAGLES’ (Schaye+14) 
and even the new generation Illustris-TNG simulation suites.

⇠ M200 = 6.5⇥ 1014M�

6.8⇥ 107M�



Survival of cold fronts due to magnetic draping (Dursi+2009)



❖ Conduction converts a cool-core to a non cool core cluster earlier (merger driven)

❖ Reduces SFRs by more than an order of magnitude at low redshifts

❖ Completely quenches SF about 0.5 Gyrs earlier

Better quenching



Redder galaxies

❖ Conduction converts a cool-core to a non cool core cluster earlier 
❖ Reduces SFRs by more than an order of magnitude at low redshifts
❖ Completely quenches SF about 0.5 Gyrs earlier

NoCond Condz=0.5



❖ Lower AGN 
feedback in the 
Cond but greater 
impact of SFRs

❖ Effect of 
conductive 
heating? -No 
because conductive 
heating is at most 
10% of cooling 
losses

❖ Also cannot 
explain efficiency 
in NCC phase

T0



Increased Metal mixing

  

NoCond

Cond



Forced Turbulent  Mixing

❖ Lowers the central metallicity
❖ Reduces the gradients

❖ Lowers dispersion

❖ Conduction run metallicity profiles match 
observations

❖ Conductive heating cannot explain this behavior
❖ Indicates efficient mixing in the conduction run



Convective stability of a pure hydrodynamic fluid

❖ Stable to convection as 
long as dS/dr > 0

Pratt+2010



Convective stability of a pure hydrodynamic fluid
❖ Stable to convection as long as
❖ Buoyant restoring force  
❖ If injected turbulent force is                          then the fluid element 

oscillates with the classical Brunt-Vaisala frequency.
❖ If                            then you effectively induce mixing in the 

plasma
❖ The restoring force depends on the entropy gradient
❖ If the gradient is lower then you get more mixing with less 

turbulent velocity.

dS/dr > 0

g rS
�r

S0

S0

Sb

Fadb ⇠ �⇢g(dlnS/dr)�r
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Fturb > Fadb



Convective stability of a pure hydrodynamic fluid

• Entropy gradient 
shallower in the Cond 
run.

• Suggesting that there is 
more mixing despite 
higher restoring force



Turbulent  Mixing?
❖ 1D velocity 

dispersion 
lower in the 
Conduction run

❖ Paradoxically, 
this seems to 
suggest more 
plasma mixing 
in spite of 
lower 
turbulence 
velocities.



Convective stability of a anisotropically conducting fluid

❖ The dynamics of rapidly conducting 
plasma (                       )  very different  

❖ Gas isothermal along magnetic field 
lines under these conditions

❖ System unstable even if                     
❖ HBI - Heat flux driven buoyancy 

instability (Quataert 2008) -  

dS/dr > 0

t
dyn

>> t
cond

dT/dr > 0

T

g



Convective stability of a anisotropically conducting fluid

❖ MTI - Magneto thermal 
instability (Balbus 2001) -

❖ Main take away point - The 
entire cluster  ICM is 
convectively unstable - making 
it prone to mixing (Zero 
restoring force)!!  

dT/dr < 0

gT



Response of a stratified plasma to external 
turbulence

❖ Lower forces mean are mixing for 
a given the same amount of 
turbulent driving

❖ However, the turbulent velocities 
are lower in the Cond run.

❖  To correct for this we look at the 
Richardson number.   

❖ Ri in Cond run hovers around 1 
meaning there is efficient mixing

❖ Not the case for the NoCond run.

Ri(NoCond,Cond) = ⇢r
i

[dln(S,T)/dlnr]/u2
o



Increased Mixing
Conduction can increase mixing in a stratified plasma (Sharma+2009a,b)
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• Entropy gradient 
shallower in the Cond 
run.

• Formation of a cool 
core in Cond run?

Impact of efficient coupling



• Entropy gradient 
shallower in the Cond 
run.

• Formation of a cool 
core in Cond run?

Impact of efficient coupling

log(r/r200)



❖ Lower AGN 
feedback in the 
Cond but greater 
impact of SFRs

T0

Impact of efficient coupling



Impact of efficient coupling
3⇥ 1014M�



Impact of efficient coupling
9⇥ 1014M�



Artificial Conduction produces cool cores

Rasia+15

Artificial conduction 
introduced to increase 
the accuracy of SPH 

causes cool cores.

Done to increase 
mixing!!



❖ Anisotropic conduction makes the entire ICM unstable 
and prone to mixing

❖ Conduction enables mixing

❖ Leads to efficient isotropizaton of injected AGN energy, 
making quenching more efficient

❖ Efficient coupling leads to generation of low entropy 
cores - important implications for CC/NCC dichotomy

❖ Purely hydrodynamic treatment does not fully describe 
the complex physics of the ICM

Conclusions



Future Work - Cluster simulation suite
10 clusters between 10^14 and 2x10^15 Msun 


