THE SPECIAL GROWTH HISTORY OF BRIGHTEST CLUSTER GALAXIES

CARLO NIPOTI

BOLOGNA UNIVERSITY

Nipoti (2017, MNRAS, 467, 661) Nipoti, Giocoli et al. (2017, in prep.)

Galaxy clusters 2017, Santander, July 2017

Two-phase mass assembly of BCGs

pprox 50% before cluster virialization (z \gtrsim 1)

pprox 50% via cannibalism ($z \lesssim 1$)

Abell 2261 (Postman et al. 2012)

(Merritt 1985, Tremaine 1990, Dubinski 1998, De Lucia & Blaizot 2007, Lauer et al. 2014, Shankar et al. 2015, Vulcani et al. 2016)

Galaxy clusters 2017, Santander, July 2017

Cannibalism = accretion of companion cluster galaxies

(Ostriker & Tremaine 1975, White 1976, Hausman & Ostriker 1978)

- \rightarrow Cannibalism is driven by dynamical friction

Cannibalism-driven growth of BCGs

Figure 1. VLT-FORS1 I-band image of the galaxy cluster C0337-2522

Evolution of M_* , $R_{\rm e}$ & σ depends on:

- \rightarrow merger rate
- \rightarrow properties of cannibalized galaxies
- \rightarrow merging orbital parameters

M_* - σ : effect of merging orbital energy

(see also Nipoti et al. 2003; Boylan-Kolchin et al. 2006; Nipoti et al. 2009; Posti et al. 2014)

Carlo Nipoti

Galaxy clusters 2017, Santander, July 2017

Elliptic orbits ($E_{\rm orb} < 0$)

Questions I'll try to address

- \rightarrow How are BCG-satellite mergers?
- \rightarrow Different from cosmological halo-halo mergers?
- ightarrow How does dynamical friction reshape the orbits?

N-body simulations

- \rightarrow Rigid satellite starts from apocentre
- $\rightarrow \mbox{ Initial conditions from } \\ \mbox{ distribution function }$

Carlo Nipoti

- \rightarrow Measuring merger orbital parameters at different radii
- \rightarrow Simulations: LE SBARBINE (Despali et al. 2016)

Satellite's orbit: trajectory

 $M_{\rm sat}/M_{\rm cen}\simeq 1/8$

 $M_{\rm sat}/M_{\rm cen}\simeq 2/3$

Satellite's orbit: radial distance vs. time

 $M_{\rm sat}/M_{\rm cen}\simeq 1/8$

Galaxy clusters 2017, Santander, July 2017

 $M_{\rm sat}/M_{\rm cen}\simeq 2/3$

Angular momentum vs. energy (Lindblad diagram)

Isotropic

 $M_{\rm sat}/M_{\rm cen}\simeq 1/8$

 $M_{
m sat}/M_{
m cen}\simeq 2/3$

Galaxy clusters 2017, Santander, July 2017

Angular momentum vs. energy (Lindblad diagram)

Radially anisotropic

 $M_{\rm sat}/M_{\rm cen}\simeq 1/8$

$$M_{\rm sat}/M_{\rm cen}\simeq 2/3$$

Galaxy clusters 2017, Santander, July 2017

No evidence of orbit circularization

- → Effect of dynamical friction depends on both orbit and host properties
- \rightarrow Host makes satellite conform to its orbital structure

(see also Bentekoe & van Albada 1987, Casertano et al. 1987, Statler 1991, van den Bosch 1999, Tsuchiya & Tsumada 2000, Arena & Bertin 2007)

Carlo Nipoti

Two-body (satellite-BCG) orbital parameters

- ightarrow ($E_{
 m 2b}$,L): energy & angular momentum
- ightarrow (e, $r_{
 m peri,2b}$): eccentricity and pericentric radius
- ightarrow (η , $r_{
 m peri,2b}$): circularity and pericentric radius
- ightarrow ($v/v_{
 m circ}$, v_r/v): relative speed and radial velocity component at a given radius

Classification of encounters

Eccentricity:

$$e=\sqrt{1+rac{2E_{2\mathrm{b}}L^2}{G^2M_{2\mathrm{b}}^2}}$$

$$e < 1.5$$
: mergers $e > 1.5$: fly-bys

Carlo Nipoti

Mergers and fly-bys in Lindblad diagram

$$M_{\rm sat}/M_{\rm cen}\simeq 2/3$$

Galaxy clusters 2017, Santander, July 2017

Merger mass ratio ξ : cosmological simulations

Dsitribution of ξ

Major mergers more important for BCGs than for accretion at $r_{\rm vir}$

Carlo Nipoti

Energy

Relative speed

Galaxy clusters 2017, Santander, July 2017

Angular momentum

Radial velocity component

Galaxy clusters 2017, Santander, July 2017

Bound mergers: less eccentric for BCGs

Circularity

Pericentric radius

No circularization, but 'grazing' orbits

- \rightarrow Cluster viewpoint: radial orbit
- \rightarrow BCG viewpoint: tangential orbit
- \rightarrow Satellite ''grazing'' the BCG

(see also Boylan-Kolchin et al. 2008)

Carlo Nipoti

Conclusions

- Dynamical friction does not necessarily lead to orbit circularization
- ▶ BCG-satellite mergers have
 - ightarrow larger mass ratios
 - \rightarrow similar binding energy
 - \rightarrow more tangential orbits

compared to halo-halo mergers at $r_{\rm vir}$

▶ Follow-up: implications for scaling laws of BCGs

THANKS!

Carlo Nipoti