The MASSIVE Galaxy Survey

John Blakeslee NRC-Herzberg, Victoria, Canada

Galaxy Clusters 2017, Santander, Spain

4 July 2016

MASSIVE Survey Team

Chung-Pei Ma (Berkeley) **Jenny Greene** (Princeton) John Blakeslee (Herzberg) Nicholas McConnell (Herzberg) Jens Thomas (MPE) Melanie Veale, Charles Goullaud, Jen Ito, Irina Eke (UCB) Jonelle Walsh (A&M), Stephanie Ciccone, Blanka Nyiri (HIA) **MASSIVE-HST:** Joe Jensen (Utah Valley U.) MASSIVE-Gas: Tim Davis (Cardiffe), Viraj Pandya (Princeton) **MASSIVE-Xray:** Andy Goulding (Princeton)

Survey paper Stellar pop gradients Molecular gas Hot X-ray gas Black hole mass Stellar kinematics Warm Ionized gas **HST** profiles **Revised distances**

Ma + Greene + Davis + Veale + Pandya + (in prep) (in prep)

(2014, ApJ) (2015, ApJ) (2016, MNRAS) Goulding + (2016, ApJ) Thomas + (2016, Nature) (2017a,b,c MNRAS) (2017, ApJ)

MASSIVE Galaxy Survey Plan

A volume-limited, integral field spectroscopic survey of the ~100 most massive early-type galaxies within ~100 Mpc

Also a wide-field photometric imaging survey

Plan: use spatially-resolved 2-d stellar kinematics to study structure and stellar content of massive early-type galaxies and their central black holes in the nearby universe

Correlation Between Black Hole Mass and Bulge Mass

MASSIVE Sample Selection

Stellar-mass selected

 $M_K < -25.3$ (2MASS XSC) $M^* > 10^{11.5} M_{sun}$ ATLAS-3D: $M_K < -21.5$

Volume limited

D < 108 Mpc (2MASS Redshift Survey) ATLAS-3D: D < 42 Mpc Includes Coma Cluster

Morphology (from Hyperleda) ~100 Early-type galaxies Mostly gEs; a handful of S0s ATLAS-3D: mostly S0s, fast rotators

Additional criteria

Dec > -6 $A_V < 0.6$ and relatively "clean"

(Ma et al. 2014)

SDSS images of some MASSIVE galaxies

Ma et al. (2014)

MASSIVE Survey Observations

Idea: combine wide-field and high-resolution IFU data

Wide-field (107"×107") Mitchell IFU McDonald 2.7m 246 fibers, each 4" 3600–5800 Å Out to ~2 R_e for >50% galaxies

High-resolution (~0.1" to 4")NIFS + AOGeminiGMOS N+SGemini

Photometry CFHT, HST, PanSTARRS

Example Mitchell IFU Spectra for NGC 1600

MASSIVE vs ATLAS^{3D} angular coverage for 2 galaxies in common

MASSIVE galaxies similar in angular size to ATLAS^{3D} sample galaxies; different in Stellar Velocity Dispersion

Ma et al. (2014)

NGC 4874

MASSIVE Sample Galaxy Environments

No significant fast/slow rotator trend with environment, after controlling for M_K

See Veale et al. (2017b, MNRAS) for detailed analysis.

Figure 1. Dispersion profiles in bins of M_K . The 3 panels are arranged from high to low mass, in equal-number bins corresponding to $10^{12.18}M_{\odot} > M_* > 10^{11.82}M_{\odot}$ (left), $10^{11.82}M_{\odot} > M_* > 10^{11.72}M_{\odot}$ (center), and $10^{11.72}M_{\odot} > M_* > 10^{11.60}M_{\odot}$ (right). Each profile is blue at $R > R_e$. From left to right, overall σ becomes slightly lower, and more profiles are steeply falling.

Veale et al. (2017c, in prep)

Rising dispersion profile correlates with h_4

Veale et al. (2017c, in prep)

M_{BH}-σ-environment relation?

McConnell & Ma (2013)

Supermassive BH Demographics

In addition to high σ 's, hosts of the most massive BHs tend to have flat central profiles, or "cores." In the **MASSIVE** sample, NGC 1600 has flattest central profile, with a break radius $r_b \approx 0.7$ kpc. Unlike known hosts of $\sim 10^{10}$ M_{sun}-ish BHs, NGC 1600 resides in a small group (similar to the most luminous quasars), not in a rich cluster.

Thomas+ 2016, Nature

Contrasting Environments

Coma cluster

N1600 group

 $M_{\rm vir} = (1.4 - 2.7) \times 10^{15} M_{\rm sun}$ $L_{\rm x} = 4 \times 10^{44} L_{\rm sun}$ Rank 2 galaxy similar in L $M_{\rm vir} \sim 1.5 \times 10^{14} M_{\rm sun}$ $L_{\rm x} \sim 1000 {\rm k \ lower}$ Rank 2 galaxy 6x fainter (fossil-like)

NGC 1600 Mitchell/VIRUS-P + GMOS IFU velocity data

BH Scaling Relations for Cored Ellipticals

BH mass dominates within sphere of influence, rsoi

Summary

- Making MASSIVE progress on multiple fronts, targeting 100+ early-type galaxies with $M \star > 10^{11.5} M_{sun}$, d < 108 Mpc.
- About 75% of the wide-field IFU data in hand; deep wide-field IR observations obtained for 90% of the galaxies, plus ongoing programs with ALMA/IRAM, Chandra, and HST.
- Specific angular momentum parameter λ & f_{slow} correlate only with stellar mass, but velocity dispersion profile σ(R) correlates with environment, even controlling for M★.
- Correlation of h_4 and σ profiles; thus, h_4 with environment
- Molecular & ionized gas detected in many galaxies: **red ≠ dead**.
- NGC 1600 harbors first >10¹⁰ M_{sun} BH outside a rich cluster, consistent with environs of most luminous QSO at $z \approx 2$.
- More MASSIVE science to come!