Free-form lens models of four Hubble Frontier Fields clusters: Maximum lensing efficiency

J. Vega-Ferrero, J. M. Diego and G. Bernstein

Summary

- 1. Hubble Frontier Fields (HFF)
- 2. Free-form gravitational lensing models
- 3. Results
- 5. Conclussions

Free-form lens models of four HFF

1. Hubble Frontier Fields (HFF)

Motivations

- Unprecedented look into the cosmos with the help of giant cosmic lenses in space
- Gravity of massive galaxy clusters (GCs) distorts and magnifies the light of distant galaxies (10-100 times fainter than any previously observed)
- Galaxy evolution in the early the universe (reionization)
- **Dark matter** within massive GCs
- Early glimpse of the work by the **JWST**

1. Hubble Frontier Fields (HFF)

HST data

http://www.stsci.edu/hst/campaigns/frontier-fields/

• 560 orbits (630 hours) of HST to observe six CGs

Abell 2744	z=0.308	MACS 1149	z=0.541
MACS 0416	<i>z</i> =0.397	Abell S1063	z=0.348
MACS 0717	z=0.545	Abell 370	z=0.375

- Drizzled images (0".03 pixel⁻¹) provided by STScI
- ACS optical images: F435W (B435), F606W (V606), F814W (i814) --- M_{AB} = 28.7 mag
- WFC3/IR images: F105W (Y105), F125W (J125), F140W (JH140), F160W (H160) --- M_{AB} = 29 mag

Free-form lens models of four HFF

1. Hubble Frontier Fields (HFF)

Frontier Fields Lens Models v4

https://archive.stsci.edu/prepds/frontier/lensmodels/

- Robust and reliable lens (mass) models for exploiting the science of HFF
- Mass model accuracy relies on:
 - number of multiple imaged background galaxies
 - spectroscopy of these multiple images
- Five teams contracted by STScI to produce GL models
- Share latest observational constraints (positions and redshifts) from GLASS, CLASH-VLT, MUSE-VLT
- GOLD, SILVER and BRONCE candidates

Gravitational lensing models

Strong lensing constraints ⇒ **lens inversion**

- WSLAP+ (Weak & Strong Lensing Analysis Package): free-form lensing model
- WSLAP+ team: G. Bernstein, J. M. Diego, J. Vega-

Ferrero, D. Lam, T. Broadhurst

Parametric	Free-form
Mass reconstruction by combining clumps of matter	Cluster subdivided into a mesh to map lensing observables
Clumps described by an ensemble of parameters (density profile)	Mesh transformed into a pixelised mass distribution

Free-form lens models of four HFF

WSALP+ lensing model

Diego et al. 2005, 2007; Sendra et al. 2014; Diego et al. 2016

No assumptions on the distribution of DM

Mass distribution

<u>Compact component</u>

cluster members *M/L* ratio (N_g) total mass: NFW or surface brightness

Diffuse component

gaussians on a grid (N_c)

params. \propto grid points

+ background sources (N_s)

Free-form lens models of four HFF

WSALP+ lensing model

Diego et al. 2005, 2007; Sendra et al. 2014; Diego et al. 2016

- No assumptions on the distribution of DM
- Fast algorithm (secs. to mins.): multiple solutions
- Multiresolution code: adaptative grid

Free-form lens models of four HFF

WSALP+ lensing model

Diego et al. 2005, 2007; Sendra et al. 2014; Diego et al. 2016

- No assumptions on the distribution of DM
- Fast algorithm (secs. to mins.): multiple solutions
- Multiresolution code: adaptative grid
- Combine weak and strong lensing
- Spatial information about knots in resolved systems
- Multilens plane (different layers)

The Frontier Fields Lens Modeling Comparison Project

(Meneghetti et al. 2016)

Free-form lens models of four HFF

Frontier Fields Lens Models v4

https://archive.stsci.edu/prepds/frontier/lensmodels/

HFF	Z	Multiple images (systems)	Cluster Members	Members references	
MACS1149	0.544	132(9) 154(17)	203	3 layers: 1 x central BCG + 1 x bright galaxy + 1 x cluster members	
MACS0416	0.396	113 (35) 158 (54)	249	VIMOS CLASH-VLT (Balestra et al. 2016). VLT, MUSE spectroscopic (Caminha et al. 2016), Zitrir et al. (2013) F814W-F475W color	
MACS0717	0.548	54 (9) 72 (17)	338	Richard et al. (2014): colour-colour, two colour magnitude, spectroscopical calibration	
Abell 2744	0.308	76(24) 180(53)	403	AstroDeep (Merlin et al. 2016, Castellano et al 2016), GLASS (Treu et al. 2015), Owers et al. 2011	
EE Long tooms & STCcI					

Free-form lens models of four HFF

Frontier Fields Lens Models v4

https://archive.stsci.edu/prepds/frontier/lensmodels/

HFF	Z	Multiple images (systems)	Cluster Members	Members references	
MACS1149	0.544	132(9) 154(17)	203	3 layers: 1 x central BCG + 1 x bright galaxy + 1 x cluster members	
MACS0416	0.396	113 (35) 158 (54)	249	VIMOS CLASH-VLT (Balestra et al. 2016). VLT/ MUSE spectroscopic (Caminha et al. 2016), Zitrin et al. (2013) F814W-F475W color	
MACS0717	0.548	54 (9) 72 (17)	338	Richard et al. (2014): colour-colour, two colour- magnitude, spectroscopical calibration	
Abell 2744	0.308	76(24) 180(53)	403	AstroDeep (Merlin et al. 2016, Castellano et al. 2016), GLASS (Treu et al. 2015), Owers et al. 2011	
Jauzac et al. 2015: 9 spect. Systems					

Free-form lens models of four HFF

WSALP+ lensing models

HFF	z	Layers	FOV (arcmin ²)	Leyer description
MACS1149	0.544	3	3.6 x 3.6	1 x central BCG + 1 x bright galaxy + 1 x cluster members
MACS0416	0.396	4	3.6 x 3.6	1 x North BCG + 1 x South BCGs + 1 x foreground (z = 0.112) + 1 x cluster members
MACS0717	0.548	2	3.6 x 3.6	1 x foreground (z = 0.154) + 1 x cluster members
Abell 2744	0.308	1	4.4 x 4.4	1 x Center BCG + 1 x South BCGs + 2 x bright galaxies + 1 x cluster members

Free-form lens models of four HFF

WSALP+ lensing models

Free-form lens models of four HFF

WSALP+ lensing models

Free-form lens models of four HFF

Goodness of model

• root-mean-square:

$$rms = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\theta_i^{obs} - \theta_i^{pred}\right)^2}$$

rms (a	rcsec)	MACS1149	MACS0416	MACS0717	Abell 2744
BEST	ALL	1.06	0.72	0.68	1.18
BEST	GOLD	0.99	0.74	0.55	0.88
RANGE	ALL	1.02	0.88	0.86	1.28
RANGE	GOLD	0.98	0.86	0.56	1.07

 z-spect required for accuracy in the magnification (Johnson & Sharon 2017)

Free-form lens models of four HFF

Goodness of model

 $r\gamma$

• root-mean-square:

$$ns = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\theta_i^{obs} - \theta_i^{pred}\right)^2}$$

Free-form lens models of four HFF

MACS 1149: Mass distribution

• Subs. outskirts significant impact on predicted positions (Acebron et al. 2017) and mass distributions

Free-form lens models of four HFF

Magnification maps $(z_s = 9)$

Free-form lens models of four HFF

Magnification maps $(z_s = 9)$

Free-form lens models of four HFF

Magnification maps $(z_s = 9)$

Free-form lens models of four HFF

Lensing efficiency

- Lensing efficiency (Wong et al. 2012): total surface area in the source plane above $\mu = 3$
- Caustics from magnification:

$$A_{s}(\mu) = \frac{1}{\mu} A_{l}(\mu) \longrightarrow A(>\mu) = \int \underbrace{\frac{dA_{s}}{d\mu}}_{=} d\mu$$

Free-form lens models of four HFF

Lensing efficiency $(z_s = 9)$

Free-form lens models of four HFF

Lensing efficiency $(z_s = 9)$

 Lensing efficiency => high-z lensed galaxies and high-z luminosity function

A (arcmin ²)	MACS1149	MACS0416	MACS071	7 Abell 2744
A (μ > 3)	0.461	0.396	0.741	0.685
A (μ > 5)	0.015	0.011	0.028	0.013
A (μ > 10)	0.005	0.003	0.011	0.004

~3 x larger than Richard et al. 2014

Free-form lens models of four HFF

Lensing efficiency $(z_s = 9)$

• Caustics maps:

Free-form lens models of four HFF

Maximum lensing efficiency

• Caustics maps:

- Mean value (A_{mean})
- Maximum value (A_{max})

Free-form lens models of four HFF

Maximum lensing efficiency

- Maximum value (A_{max})

High res. 8192 x 8192 pix.

Free-form lens models of four HFF

Maximum lensing efficiency

2.5 • Caustics maps: MACS 0717 - Mean value (Amean) - Maximum value (A_{max}) 2.0 A_{μ}/A_{mean} A_{μ} ≈ 2 1.5 meanNumber of multiple images falling into the same pixel 1.0 10⁰ 10¹ 10^{2} in the source plane μ

Free-form lens models of four HFF

Maximum lensing efficiency

Free-form lens models of four HFF

Maximum lensing efficiency

Free-form lens models of four HFF

Maximum lensing efficiency

Free-form lens models of four HFF

5. Conclussions

- Two models: BEST and RANGE (100 solutions) model variance, stat. errors
- Image RMS \lesssim 1 arcsec. GOLD smaller RMS \implies z-

spect for accuracy in the magnification

- Subs. outskirts significant impact on predicted positions (Acebron et al. 2017) and mass distributions
- Lensing efficiency MACS 0717 (0.741 arcmin²) ~3 x
 larger than Richard et al. 2014
- Maximum lensing efficiency: high-z galaxies and luminosity function

$$A_{max} \approx \frac{A_{\mu}}{2} \mu^{0.161 \pm 0.002}$$

Rest HFF clusters Comparison sims.

Free-form lens models of four HFF