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Experience biases perception and limits imagination
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Gravitational lensing

images source position: y € R?

image position: x € R?

lensing potential: ¥ (x),

source ' : y distortion matrix: A(x),

lens mapping:

images y=x— Viy(z) = A(z) z
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Gravitational lens modelling
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source position: y € R
image position: € R?,
lensing potential: ¥ (x),

distortion matrix: A(x)

lens mapping:

y=z—-Vy(z)= Alz)x




Observables of unresolved images = moments of brightness

cusp (3 images):

relative distances,

image ellipticities, orientations,
magnification ratios,

(time delays)

fold (2 images):

relative distances,

image ellipticities, orientations,
magnification ratios,

(time delays)
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(Best case) Model-independent lens characterisation

cusp (3 images):

critical cusp point,

parabolic approx. to critical curve,
local reduced shear,
(magnifications),

(source)

fold (2 images):

critical fold point,

absolute slope of critical curve,
local reduced shear,
(magnifications),

(source)
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e local Taylor expansion around critical point: y = & — Vi ()

Pe(x) = (@ + sy()
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— proximity to critical curve vs. accuracy

o coefficients determined by observables (brightness moments)

— precision of moments vs. number of coefficients

® images from the same source to eliminate y

— number of multiple images vs. number of equations

e system of equations subject to degeneracies

—> degeneracy of observables vs. entanglement of coefficients
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e local Taylor expansion around critical point: y = & — Vi ()

Pe(x) = (@ + sy()
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— proximity to critical curve vs. accuracy

o coefficients determined by observables (brightness moments)

— precision of moments vs. number of coefficients

® images from the same source to eliminate y

— number of multiple images vs. number of equations

e system of equations subject to degeneracies

—> degeneracy of observables vs. entanglement of coefficients



Accuracy limits for a simulated singular isothermal ellipse
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— reconstruction within tolerable range of accuracy
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linear transformation between images instead of moments

e encodes same information as quadrupole moments
o yields the same results close to the critical curve (up to the parametrisation)

® recovers properties at images D, E
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Accuracy for a simulated resolved source in an SIE lens

< small source
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Conclusion

e purely data-driven approach:

is based on general mathematical properties of the lens potential

system of equations directly yields (ratios of) potential derivatives

no model fitting, no fine-tuning, no degeneracies due to model assumptions
galaxies or galaxy clusters as lenses treated by same set of equations

¢ local information retrieval:

e reconstruction of critical curve, potential derivatives close to multiple images
® special configurations (fold, cusp, small resolved images) required

o applications in the cluster regime:

o locally characterise a lensing region of interest (small-scale properties of dark matter),
e include constraints into a full galaxy cluster reconstruction to resolve central regions,
® reconstruct magnified source galaxies to study galaxy evolution.

Model-independent information reduces assumptions/ biases
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