Model-independent characterisation of strong gravitational lenses

Jenny Wagner

Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik

4th July 2017
进

Experience biases perception and limits imagination

Gravitational lensing

source position: $\boldsymbol{y} \in \mathbb{R}^{2}$, image position: $\boldsymbol{x} \in \mathbb{R}^{2}$, lensing potential: $\psi(\boldsymbol{x})$, distortion matrix: $A(\boldsymbol{x})$,
lens mapping:

$$
\boldsymbol{y}=\boldsymbol{x}-\nabla \psi(\boldsymbol{x}) \approx A(\boldsymbol{x}) \boldsymbol{x}
$$

Gravitational lens modelling

source position: $\boldsymbol{y} \in \mathbb{R}^{2}$, image position: $\boldsymbol{x} \in \mathbb{R}^{2}$, lensing potential: $\psi(\boldsymbol{x})$,
distortion matrix: $A(\boldsymbol{x})$,
lens mapping:

$$
y=\boldsymbol{x}-\nabla \psi(\boldsymbol{x}) \approx A(\boldsymbol{x}) \boldsymbol{x}
$$

Observables of unresolved images $=$ moments of brightness

cusp (3 images):
relative distances, image ellipticities, orientations, magnification ratios, (time delays)

fold (2 images):
relative distances,
image ellipticities, orientations, magnification ratios, (time delays)

(Best case) Model-independent lens characterisation

cusp (3 images):
critical cusp point, parabolic approx. to critical curve, local reduced shear, (magnifications), (source)

fold (2 images):
critical fold point, absolute slope of critical curve, local reduced shear, (magnifications), (source)

Principle

- local Taylor expansion around critical point: $\boldsymbol{y}=\boldsymbol{x}-\nabla \psi_{\mathrm{t}}(\boldsymbol{x})$

$$
\begin{aligned}
\psi_{\mathrm{t}}(\boldsymbol{x})= & \psi^{(0)}+\delta \psi(\boldsymbol{x}) \\
= & \frac{1}{2}\left(1-\psi_{11}^{(0)}\right) x_{1}^{2}-\frac{1}{6} \psi_{111}^{(0)} x_{1}^{3}-\frac{1}{2} \psi_{112}^{(0)} x_{1}^{2} x_{2} \\
& -\frac{1}{2} \psi_{122}^{(0)} x_{1} x_{2}^{2}-\frac{1}{6} \psi_{222}^{(0)} x_{2}^{3}
\end{aligned}
$$

\rightarrow proximity to critical curve vs. accuracy

- coefficients determined by observables (brightness moments)
\rightarrow precision of moments vs. number of coefficients
- images from the same source to eliminate \boldsymbol{y}
\rightarrow number of multiple images vs. number of equations
- system of equations subject to degeneracies
\rightarrow degeneracy of observables vs. entanglement of coefficients

Principle

- local Taylor expansion around critical point: $\boldsymbol{y}=\boldsymbol{x}-\nabla \psi_{\mathrm{t}}(\boldsymbol{x})$

$$
\begin{aligned}
\psi_{\mathrm{t}}(\boldsymbol{x})= & \psi^{(0)}+\delta \psi(\boldsymbol{x}) \\
= & \frac{1}{2}\left(1-\psi_{11}^{(0)}\right) x_{1}^{2}-\frac{1}{6} \psi_{111}^{(0)} x_{1}^{3}-\frac{1}{2} \psi_{112}^{(0)} x_{1}^{2} x_{2} \\
& -\frac{1}{2} \psi_{122}^{(0)} x_{1} x_{2}^{2}-\frac{1}{6} \psi_{222}^{(0)} x_{2}^{3}
\end{aligned}
$$

\rightarrow proximity to critical curve vs. accuracy

- coefficients determined by observables (brightness moments)
\rightarrow precision of moments vs. number of coefficients
- images from the same source to eliminate \boldsymbol{y}
\rightarrow number of multiple images vs. number of equations
- system of equations subject to degeneracies
\rightarrow degeneracy of observables vs. entanglement of coefficients

Principle

- local Taylor expansion around critical point: $\boldsymbol{y}=\boldsymbol{x}-\nabla \psi_{\mathrm{t}}(\boldsymbol{x})$

$$
\begin{aligned}
\psi_{\mathrm{t}}(\boldsymbol{x})= & \psi^{(0)}+\delta \psi(\boldsymbol{x}) \\
= & \frac{1}{2}\left(1-\psi_{11}^{(0)}\right) x_{1}^{2}-\frac{1}{6} \psi_{111}^{(0)} x_{1}^{3}-\frac{1}{2} \psi_{112}^{(0)} x_{1}^{2} x_{2} \\
& -\frac{1}{2} \psi_{122}^{(0)} x_{1} x_{2}^{2}-\frac{1}{6} \psi_{222}^{(0)} x_{2}^{3}
\end{aligned}
$$

\rightarrow proximity to critical curve vs. accuracy

- coefficients determined by observables (brightness moments)
\rightarrow precision of moments vs. number of coefficients
- images from the same source to eliminate \boldsymbol{y}
\rightarrow number of multiple images vs. number of equations
- system of equations subject to degeneracies
\rightarrow degeneracy of observables vs. entanglement of coefficients

Accuracy limits for a simulated singular isothermal ellipse

cusp configuration (A, B, C)
fold config. (A, B)

\rightarrow reconstruction within tolerable range of accuracy

Alternative to moments for resolved images (with N. Tessore)

linear transformation between images instead of moments

- encodes same information as quadrupole moments
- yields the same results close to the critical curve (up to the parametrisation)
- recovers properties at images D, E

Accuracy for a simulated resolved source in an SIE lens

$$
g_{1}^{(A)}=0.685_{-0.047}^{+0.042}
$$

$\frac{1}{-1.60-0.80} 0.00$ $g_{1}^{(B)}=-1.060_{-0.266}^{+0.220}$

$g_{1}^{(C)}=-1.328_{-0.426}^{+0.285}$

$g_{1}^{(D)}=0.462_{-0.129}^{+0.128}$

$$
g_{2}^{(A)}=-0.138_{-0.029}^{+0.030}
$$

$g_{2}^{(B)}=-1.241_{-0.241}^{+0.193}$

\leftarrow small source

large source \rightarrow

$f_{\kappa}^{(C)}=0.927_{-0.310}^{+0.389}$

$g_{1}^{(A)}=0.669_{-0.031}^{+0.028}$

$$
g_{2}^{(A)}=-0.142_{-0.022}^{+0.022}
$$

$g_{1}^{(B)}=-0.965_{-0.160}^{+0.140}$
$g_{2}^{(B)}=-1.228_{-0.146}^{+0.133}$

$g_{1}^{(C)}=-1.008_{-0.165}^{+0.144}$

\rightarrow works well until image extension $\approx 10 \%$ distance between images

Conclusion

- purely data-driven approach:
- is based on general mathematical properties of the lens potential
- system of equations directly yields (ratios of) potential derivatives
- no model fitting, no fine-tuning, no degeneracies due to model assumptions
- galaxies or galaxy clusters as lenses treated by same set of equations
- local information retrieval:
- reconstruction of critical curve, potential derivatives close to multiple images
- special configurations (fold, cusp, small resolved images) required
- applications in the cluster regime:
- locally characterise a lensing region of interest (small-scale properties of dark matter),
- include constraints into a full galaxy cluster reconstruction to resolve central regions,
- reconstruct magnified source galaxies to study galaxy evolution.

Model-independent information reduces assumptions/ biases

Thank you for your attention!

I gratefully acknowledge

- inspiring discussions with my colleagues (esp. M. Carrasco, S. Meyer, N. Tessore)
- funding by the DFG (WA3547/1-1)
- and the opportunity to present my results here!

Further information:

www.zah.uni-heidelberg.de/staff/jwagner

> j.wagner@uni-heidelberg.de

