#### The XMM Cluster Survey: The different evolution of X-ray clusters and groups of galaxies

#### Leyla S. Ebrahimpour

Supervisor Pedro T. P. Viana

05 July 2017









#### Outline

- Introduction
- Motivation
- Work done
  - The sample
  - Methodology
  - Results
- Conclusion

#### Introduction

#### **Clusters and groups of galaxies**

- The largest gravitational bound structures in the Universe
- Important tracers to study the large scale structure
- Constrain the cosmological parameters

Mass function : The abundance of galaxy clusters above a certain threshold as a function of mass and redshift

### Introduction

#### **Mass Function**

- Decreasing function of M steepens at high M: Very high mass clusters extremely rare
- Changing cosmological parameters: Changing shape of mass function





Fedeli et al , A&A, 486, 2008

#### Motivation

#### **How to get the Mass Function?**

To measure the MF observationally we need:

- Detect and count clusters : Cluster surveys
- Estimate cluster/groups masses :
- Scaling relations between galaxy clusters/groups properties detected through different wavelengths

Different scaling behaviors depending on considering whether the cluster or the group regime



These structures have formed and/or evolved with time in different ways

Sub-mm/mm: SZ flux

X-ray:

Luminosity,

Temperature

**Optical:** 

**Richness** 









Motivation The  $L_X$  -T relation

- Never been characterized simultaneously for groups and clusters of galaxies
- No distinction between clusters and groups/Assumptions to define cluster/group-only samples

### 2 < T < 3 (KeV)

### Motivation The L<sub>X</sub> -T relation

| Self-similar Model | $L_X \propto T^2$                                                                                                | $L_X \propto \alpha (1+z)^{\gamma} T^2$                                                  |                                                                   |
|--------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|                    |                                                                                                                  | $\gamma > 0$                                                                             |                                                                   |
| Observations       | $L_X \propto T^{2-3}$                                                                                            | $L_X \propto \alpha (1+z)^{\gamma} T^{\beta}$                                            |                                                                   |
|                    | Vikhlinin et al. 2002;<br>Maughan et al. 2006;<br>Pacaud et al. 2007;<br>Pratt et al. 2009;<br>Takey et al. 2011 | $\gamma > 0$                                                                             | $\gamma = 0 \text{ or } < 0$                                      |
|                    |                                                                                                                  | Vikhlinin et al. 2002;<br>Lumb et al. 2004;<br>Maughanet al. 2006;<br>Pacaud et al. 2007 | Ettori et al. 2004;<br>Reichert et al. 2011;<br>Clerc et al. 2012 |

#### Work done

#### > The Sample

- XCS-redMaPPer SDSS-DR8: 275 clusters and groups with z > 0.1
- XCS-redMaPPer DES: 66 clusters and groups with z > 0.1

**341 groups and clusters of galaxies** 



#### 0.1 < z < 0.8



#### $2.36 \times 10^{42} \text{ erg/s} < L_x < 1.86 \times 10^{46} \text{ erg/s}$







### Work done ≻ Methodology

#### **Statistical Framework : Hierarchical Bayesian Statistics**



 $\log(L/E_z) = \alpha + \beta \log(T/5) + \gamma \log(1+z) + \epsilon$  $E_z = (0.27 \times (1+z)^3 + 0.73)^{1/2}$ 

#### **R** programming :lira

Mauro Sereno, http://arxiv.org/pdf/1509.05778v2.pdf16

#### **L-T scaling relation**





#### **L-T scaling relation**





#### **L-T scaling relation**





#### Conclusion

- Use hierarchical Bayesian statistics to estimate the X-ray luminosity of groups and clusters of galaxies applying the XCS data cross matched by redMaPPer SDSS-DR8 and redMaPPer DES data
- Different L-T relations are estimated for groups and clusters of galaxies together with the transition point
- A steeper slope than the self-similar expectation, which is  $L/E_z \propto T^2$ , for clusters and a slower slope for groups of galaxies
- The redshift evolution is positive which leads to a stronger evolution in luminosity at fixed temperature than the self-similar model

## Thanks for your attention