FUV studies of the hot and warm intracluster gas in M87

Mike Anderson MPA michevan@mpa-garching.mpg.de

Anderson and Sunyaev (2016) MNRAS, 459, 2806 Anderson and Sunyaev (2017) submitted to arXiv next week

Galaxy Clusters 2017 5 July 2017

Outline

- Review Hα filaments in M87
- Introduce the [Fe XXI] 1354A transition
- Present new HST/COS spectra of M87 filament
- Discuss excitation mechanism of FUV and optical line emission
 - Physical picture of multiphase M87 ISM

-

Hα in Galaxy Clusters

Filamentary Structure in M87

- Multiphase (Hα, [C II], C IV, multiphase ICM)
- filaments avoid radio lobes
- filaments contain 1 keV (10^7 K) plasma...

Forbidden Fe lines

- ground-state magnetic dipole transitions
- produced from 10^7 K plasma in CIE
- often seen in Solar flare spectra
- Fe XXI] 1354A is the strongest
- opens the possibility of measuring ICM kinematics at FUV spectrograph resolution (COS: A~3000 cm², Δv ~ 15 km/s)

Archival HST/COS spectrum of filament

- low-resolution spectrum
- C IV λ1549 and He II λ1640 are clearly detected (Sparks et al. 2012)
- tentative (2.2σ) evidence for [Fe XXI] as well

New HST/COS spectrum of filament

FUV continuum?

C II $\lambda1335$ matches [C II] $158\mu m$ in both v_r and σ

velocity (km/s)

velocity (km/s)

Red dotted line is corrected for Galactic absorption

 $Ly\alpha$ is narrow and shows self-absorption

Red dotted line is corrected for Galactic absorption

Intrinsic profile is asymmetric -> blueshifted injection velocity in rest frame of filament

- Red dotted line is corrected for Galactic absorption
- Intrinsic profile is asymmetric -> blueshifted injection velocity in rest frame of filament
- Overall Ly α has same v_r as C II and N V, and slightly higher σ due to resonant scattering.

Line fitting: [Fe XXI]

[Fe XXI] is detected at 4.4-5.1 σ , depending on the binning

Parameters are roughly consistent with our 2.2σ measurement using archival data, but this measurement is much more precise

Note the blueshift and the narrowness of the line

[Fe XXI] is detected at 4.4-5.1 σ , depending on the binning

Parameters are roughly consistent with our 2.2σ measurement using archival data, but this measurement is much more precise

Note the blueshift and the narrowness of the line

Collisional Excitation or Recombination?

Ly α : H α is an excellent diagnostic of the excitation mechanism We have Ly α , and can get H α from archival HST observations

Collisional Excitation or Recombination?

Ly α : H α is an excellent diagnostic of the excitation mechanism

We have Ly α , and can get H α from archival HST observations

Result: the filament seems to be collisionally excited

Blueshifted [Fe XXI]?

Conclusions

M87 filament seems to be largely collisionally excited

FUV emission comes from extremely narrow boundary layer

[Fe XXI] is detected from 1 keV ICM at 4.4-5.1 σ

1 keV plasma is kinematically decoupled from the filament ($v_r = -92 + 34 - 22 \text{ km/s}$, $\sigma = 69 + 79 - 27 \text{ km/s}$)

Only the second direct measurement to date of ICM turbulence

Our HST/COS observations of [Fe XXI] used ~38 ks of observing time Hitomi observations of Fe XXV used 230 ks of observing time These techniques are complementary! But, when 1 keV plasma is present, [Fe XXI] can be very efficient