ENVIRONMENTAL EFFECTS AND STAR FORMATION QUENCHING IN SPARCS 0.1<z<1.1 GALAXY CLUSTERS

Irene Pintos-Castro (University of Toronto)

Howard Yee (UoT) Lyndsay Old (UoT)

Adam Muzzin (U.York), Gillian Wilson (UCR), Tracy Webb (McGill), and the SpARCS Collaboration

ELAIS-N1 field CREDIT: NASA/JPL-CALTECH/C. LONSDALE (IPAC/CALTECH) AND THE SWIRE TEAM

OUTLINE

- SpARCS survey
- Our project: study star formation and environment with SpARCS clusters up to redshift ~1
 - Two first fields: a wealth of (public) data
 - Defining the clusters and their galaxies (i.e. generation of catalogues)
 - Star formation properties and their relation with M_{\bigstar} , R, z
- Conclusions and near future

SPARCS

Spitzer Adaptation of the Red-sequence Cluster Survey

- * Deep-wide z'-band survey combined with Spitzer SWIRE 50 deg² survey
- Clusters are selected based on z'- IRAC
 3.6µm colour using the red sequence
 technique (Muzzin+09, Wilson+09)
- % ~200 new cluster candidates at z > 1 with estimated M★ > 10^{14} M_{\odot}
- +9 published papers on clusters and galaxy evolution

but also

~ 850 cluster candidates at 0.1 < z < 1.1

XMM-LSS

Lockman Hole

CDFS

Two First Fields

	XMM-LSS	ELAIS-N1
RA (J2000)	02:21:20	16:11:00
Dec (J2000)	-04:30:00	+55:00:00
VIRE 3.6µm area	9.4	9.8
SpARCS z' area	11.7	10.3
Usable area	7.3	7.9
No. of clusters (0.1 <z<1.1, N_{RED}>6)</z<1.1, 	143	173

TWO FIRST FIELDS

 Hyper Suprime-Cam SSP Deep fields (grizY), DR1 include photometric redshifts

CFHTLS (ugriz) @XMM-LSS

UKIDSS DXS and UDS @XMM-LSS

SWIRE (IRAC and MIPS)

► HerMES (PACS and SPIRE)

HSC SUBARU STRATEGIC PROGRAM*

 Multi-band imaging survey with HSC (1.5 deg diameter FoV with 0.168" of pixel scale) on the 8.2m Subaru Telescope.

	Fields	Area (deg2)	Filters and depth	1.0			ł.	1.1	ELAIS-N'
Wide	Spring & Autumn equatorial stripes, Hectomap	1400	grizY (r~26)	0.6 DEdS 0.4 0.2					• • • •
Deep	XMM-LSS, E- COSMOS, ELAIS-N1, DEEP2-F3	27	grizY+4NB (r~27)	0 (1.0	0 0.2	0.4 ZPH	0.6 HOT DI	0.8 EMP	1.0
Ultradeep	SXDS, COSMOS	3.5	grizY+4NB (r~28)	0.8 0.6 82			1		
► Pl	DR1 on 28tl	h Februa	ry 2017	0.4 0.2	1				XMM-LSS
http://hsc.mtk.nao.ac.jp/ssp/			0	0 0.2 0.4 0.6 0.8 1.0 ZPHOT DEMP					

OBJECTIVE

Study how star formation is quenched and/or enhanced as galaxies in-fall into clusters over a wide redshift range, with a sample sufficiently large enough to control intrinsic properties of galaxies.

DETERMINING CLUSTERS RED SEQUENCE

By stacking central regions of clusters in bins of 0.1 in z_{CL} , we included galaxies that are at R < 1.5Mpc and which $z_{GAL} \in z_{CL} \pm 0.05(1+z_{CL})$

DETERMINING CLUSTERS REDSHIFT: ZRS-PEAK

DETERMINING CLUSTERS REDSHIFT:

Z_{RS-PEAK} VS Z_{CRS}

Z_{RS-PEAK}: determined by the peak of the z_{PHOT} distribution of RS galaxies

Z_{CRS}: original SpARCS redshift based on RS modelling

Systematic shift of ~0.1, already known

BUILDING THE CATALOGUE

84,655 MIPS 24µm sources

M_{\star} , SFR, and Rest-Frame Colours

- We use Le Phare (BC03) to compute stellar masses
- M★ compl. from 8M_☉ @0.5 to 8.4M_☉ @1.1

SFR derived from 24µm following Wuyts+11
 SFR compl. from 2M_☉/yr @0.5 to 21.6M_☉/yr @1.1

M_{\star} , SFR, and Rest-Frame Colours

We use EAZY to estimate U-V and V-J rest-frame colours , and follow the two-colour separations defined in Williams+09

Notice we are using running bins of 0.5Mpc wide every 0.2Mpc

At a fixed z, the fraction decreases towards the high mass bin

Decrement of f_{SF-UVJ} begins *further* from the cluster core for lower z

Decrement of f_{SF-UVJ} begins *further* from the cluster core and is *larger* for lower z

UVJ STAR FORMING GALAXIES: B-O EFFECT

+ 2 < R/R200 < 6× 0 < R/R200 < 0.5

- Faster evolution for the 9-10 log M_{\odot} stellar mass bin
- Quenching process intensified by the cluster core

SF from MIPS 24µm:

SFR vs M*

 $\log M_{\star} (M_{\odot})$

SF from MIPS 24µm:

SFR vs M*

 $\log M_{\star} (M_{\odot})$

SF FROM MIPS 24µm: completeness?

We may consider our sample to be complete down to $\log M_{\bigstar} \sim 10.7$ for clusters up to z~0.9

SF FROM MIPS 24µm:

SFR/sSFR vs M*

For z~0.3 to 0.7 down to logM★~10.7 we observe no dependency of the slope with the environment, with an average SFR larger for higher z which could be due to different depths

SF from MIPS 24µm:

SFR/sSFR vs M*

For z~0.3 to 0.7 down to logM★~10.7 we observe no dependency of the slope with the environment, with an average SFR larger for higher z which could be due to different depths

> MIPS 24µm stacking essential to study *low mass* galaxies

SF FROM MIPS 24 μ m: SFR/sSFR vs M \star

No significant trend with the environment found for the sSFR

SUMMARY

- We are using SpARCS 0.1<z<1.1 clusters in ELAIS-N1 and XMM-LSS fields to study the quenching/enhancement of the star formation activity in a sample sufficiently large enough to control intrinsic properties of galaxies
- We exploit public data from HSC SSP, UKIDSS, and SWIRE
- We built a catalogue with 228 clusters, 2.6 million galaxies, >200,000 cluster members, ~85,000 MIPS 24µm sources
- We found important to normalize R by R200 to study the effect of the environment
- The fraction of UVJ SF galaxies shows a drop towards the cluster centre which begins further from the core and is larger for the lower z. The evolution of this fraction is faster for intermediate mass galaxies (log M_{*}~ 9-10) and the cluster boosts the quenching once the process is active
- For studying the SFR we are limited to log M_★ = 10.7; down to this value we observed no significant dependency with the environment. We are in the process of stacking MIPS 24µm sources to study low-mass SF galaxies