

GALAXY CLUSTER COSMOLOGY

SOUTH POLE TELESCOPE SPT-SZ SURVEY WEAK LENSING & X-RAY FOLLOW-UP

SEBASTIAN BOCQUET ARGONNE NATIONAL LABORATORY & KICP/UCHICAGO

SPT-SZ 2500 DEG2 SURVEY SAMPLE - BLEEM+15

<u>SPT SZ observable ξ (\$\xi\$)</u>:

maximum signal-to-noise in matched-filtered 95 and 150 GHz maps

<u>Complete optical follow-up $\xi > 4.5$ </u> confirmation and redshift measurement

Well-defined survey selection function $\xi > 5$ z > 0.25measured purity 95%, simulation expectation 95%

SPT CLUSTER COSMOLOGY TO DATE

DATA SETS AND MASS CALIBRATION SCHEMES

- First 21 clusters (sim-calibrated SZ SNR-mass relation)
- 178 deg²: 18 clusters w/ 14 X-ray Y_X (hydrostatic Y_X-mass relation)
- 720 deg²: 100 clusters w/ 14 X-ray Y_X (hydrostatic Y_X-mass relation, simulation-calibrated velocity dispersion-mass relation)
 - 2500 deg²: 377 clusters w/ 82 X-ray Y_X (normalization of Y_X -mass relation from external WL study (Hoekstra+ 15))

Vanderlinde+ 2010, Benson+ 2013, Reichardt+ 2013, SB+ 2015, de Haan+ 2016

•

FLAT LCDM COSMOLOGY SPT COLLAB.: DE HAAN ET AL. (WITH SB), 2016

SEBASTIAN BOCQUET - ANL

FLAT WCDM COSMOLOGY SPT COLLAB .: DE HAAN ET AL. (WITH SB), 2016

- SPT-SZ clusters:
 - w = -1.28 +/- 0.31
- SPT clusters + Planck +WP + **BAO + SNIa:**
 - w = -1.023 + 0.042•
 - 14% tighter than same • data combination without clusters

SPT CLUSTER COSMOLOGY TO DATE

DATA SET AND MASS CALIBRATION SCHEMES

SPT-SZ 2500 DEG² SURVEY COSMO SAMPLE (377)

X-RAY & WEAK LENSING FOLLOW-UP (89 AND 32 CLUSTERS)

7

SEBASTIAN BOCQUET - ANL

ANALYSIS FRAMEWORK

CLUSTER COUNTS & MULTI-WAVELENGTH MASS CALIBRATION

- Halo mass function (Tinker+08)
- Mass-observable relations
 - SZ: SNR ~ Asz M^{Bsz} E(z)^{Csz}; log-normal scatter Dsz
 - X-ray: M ~ Ax $Y_X^{Bx} E(z)^{Cx}$; log-normal scatter D_X
 - WL: $M_{WL} = b M$; log-normal scatter D_{WL}
 - correlated scatter: ρ_{SZ-X}, ρ_{SZ-WL}, ρ_{WL-X}
 - WL bias and scatter calibrated against numerical simulations (Applegate+ in prep.)

ANALYSIS PIPELINE

CLUSTER COUNTS & MULTI-WAVELENGTH MASS CALIBRATION

SEBASTIAN BOCQUET - ANL

ANALYSIS PIPELINE

CLUSTER COUNTS & MULTI-WAVELENGTH MASS CALIBRATION

GIANT TRIANGLE CONFUSOGRAM

JOINT FIT FOR ASTROPHYSICS AND COSMOLOGY

11

-

SPT CLUSTER COSMO WITH WEAK LENSING CALIBRATION

SB+ IN PREP.

Assuming LCDM:

- Consistent with previous SPT • analysis (de Haan+16), which used prior on Y_X-mass normalization (Hoekstra+ 15)
- Important cross-check of • different mass calibration techniques and data sets
- Slight difference wrt Planck15

LOW VS. HIGH REDSHIFT HALF SAMPLES Split sample at z = 0.6, use SZ and WL data (no X-ray)

- high-z mass calibration is weaker
- Ω_m from high-z slightly higher
- This is awesome!

LOW VS. HIGH REDSHIFT HALF SAMPLES Split sample at z = 0.6, use SZ + WL + X-RAY DATA

 z-dependence of scatter between SZ - X-ray?

- z-dependence of X-ray massslope?
- X-ray slope enhances difference in Ω_m — σ₈
- Remember the Mgas-M plots our simulator friends showed, suggesting non-power-law slopes
- This is interesting!

GROWTH INDEX FROM SPT-SZ CLUSTERS

SB+ IN PREP.

- Parametrized growth of structure as a consistency test for LCDM
- $f(a) = d \ln \delta / d \ln a = \Omega_m(a)^{\gamma}$
- SPT clusters favor slightly low values of γ
- Primary CMB has some constraining power due to ISW effect

TOWARD NON-PARAMETRIC GROWTH

SB+ IN PREP.

Blue error bands: Combined analysis with primary CMB from *Planck*, but fit for σ_8 in four redshift bins using cluster data only. This way, *Planck* only constrains the geometry of the Universe, but not growth.

OUTLOOK: ONGOING WEAK LENSING FOLLOW-UP

SUMMARY

STAY TUNED FOR:

- WL-calibrated cosmology from SPT clusters
 - first constraints from high-z cluster sample
 - growth of structure
- SPTpol cluster sample: deep fields and wide fields extend the sample's mass and redshift range
- Ongoing WL observations:
 - targeted high-z with HST
 - all clusters @ z < 0.7 from Dark Energy Survey
 - targeted high S/N measurements from Magellan/Megacam