Galaxy cluster masses using galaxy properties: how should we deal with dynamically disturbed clusters?

## Lyndsay Old



Howard Yee Irene Pintos-Castro







The Galaxy Cluster Mass Reconstruction Project: <u>Radek Wojtak</u>, Gary Mamon, Frazer Pearce, Ramin Skibba, Darren Croton, Meghan Gray, Richard Pearson, Trevor Ponman, Peter Behroozi, Reinaldo de Carvahlo, uan Muñoz-Cuartas, Daniel Gifford, Anja von der Linden, Mike Merrifield, Volker Müller, Eduardo Rozo, Eli Rykoff, Chris Power, Stuart Muldrew, Alex Saro, Tiit Sepp, Cristobal Sifón, Elmo Tempel, Elena Tundo & Yang Wang.

.

#### Modern cluster (cosmology) surveys



Adapted from Allen+2011

## Galaxy-based methods



Any technique that uses galaxy properties as a mass proxy

e.g., positions, velocities, colours & luminosities

## Galaxy-based methods



Any technique that uses galaxy properties as a mass proxy

#### e.g., positions, velocities, colours & luminosities

# Why do we care about them?

- Independent mass proxy
- Relatively inexpensive \$!
- Extended galaxy distribution: clusters can be probed out to large radii e.g.,
   R<sub>200c</sub>
- 2-for-1: dynamical analysis provides additional information about virialisation state

How do we define dynamical substructure observationally?

Some fraction of cluster population still have significant substructure i.e., unrelaxed, have undergone a recent merger, far from virialisation.

Some fraction of cluster population still have significant substructure i.e., unrelaxed, have undergone a recent merger, far from virialisation.



Owers et al., 2011, Abell 2744

Dynamical Substructure

### Observational dynamical substructure detection

We use tests that aim to quantify difference between local 'subgroups' and global cluster phase-space properties

We use tests that aim to quantify difference between local 'subgroups' and global cluster phase-space properties

Kappa test

$$\kappa_n = \sum_{i=1}^n -[\log(\mathbf{P}_{\mathrm{KS}}(\mathbf{D}_{\mathrm{sim}} > \mathbf{D}_{\mathrm{Obs}})]$$

Velocity distribution of local subgroups are compared to cluster by measuring the max separation of the cumulative dist. functions (KS-test)

Colless & Dunn 1996



The significance of the presence of 'significant substructure' in these tests are quantified by Monte Carlo 'shuffling' of the velocities.

## Observational dynamical substructure detection

We use tests that aim to quantify difference between local 'subgroups' and global cluster phase-space properties

Dressler-Shectman test  $\delta_i^2 = (\frac{N_{nn} + 1}{\sigma_c})[(\overline{\nu}_{local} - \overline{\nu}_{global})^2 + (\sigma_{global} - \overline{\nu}_c)^2]$ where  $N_{nn} = \sqrt{n_{members}}$ The DS statistic  $\Delta = \sum_i \delta_i$ Dressler & Shectman 1988

Kappa test  

$$\kappa_n = \sum_{i=1}^n -[\log(P_{KS}(D_{sim} > D_{Obs})]$$
Velocity distribution of local subgroups are  
compared to cluster by measuring the max  
separation of the cumulative dist. functions (KS-test)  
Colless & Dunn 1996

3D tests such as DS, Kappa tests are found to be most reliable (Pinkney+1996, Hou+2012), but still can miss substructure e.g., viewing angle dependant (e.g., White+2010)

Introduction

#### Dynamical substructure & cluster mass estimation

 Many studies have probed the frequency of dynamically disturbed clusters in their samples (e.g., Bird 1994, West et al. 2009, Einasto et al. 2012, Hou et al. 2012, Owers et al. 2017).

#### Dynamical substructure & cluster mass estimation

- Many studies have probed the frequency of dynamically disturbed clusters in their samples (e.g., Bird 1994, West et al. 2009, Einasto et al. 2012, Hou et al. 2012, Owers et al. 2017).
- Some explore whether \*measured\* global cluster properties for highly substructured clusters differ from non-substructured clusters e.g.,

| Strong difference   | Small difference/inconclusive |
|---------------------|-------------------------------|
| Geller & Beers 1982 | Biviano et al. 1993           |
| Girardi et al. 1997 | Fadda et al. 1996             |
| Smith et al. 2005   | Wing & Blanton 2012           |
| Hou et al. 2012     | Sifon et al. 2013             |

Is it necessary to characterize all clusters in large samples and then exclude dynamically disturbed clusters? Or better to include disturbed clusters in samples purely for the statistical benefit of having a large sample?

Introduction

Dynamical Substructure

Galaxy Cluster Mass Project

Analysis

How can we probe this?

How can we probe this?

1. Compare scaling relations between two different mass proxies for disturbed and relaxed clusters

- Lopes+2006: excluding substructured clusters doesn't improve correlation between X-ray luminosity and richness.
- Sifón+2013: hints that disturbed systems may bias the relation between dynamical and SZ mass, however, state the need for more clusters to be conclusive.

## How can we figure this out?

1. Compare scaling relations between two different mass proxies for disturbed and relaxed clusters

- Lopes+2006: excluding substructured clusters doesn't improve correlation between X-ray luminosity and richness.
- Sifón+2013: hints that disturbed systems may bias the relation between dynamical and SZ mass, however, state the need for more clusters to be conclusive.

## 2. Use cosmological simulations where halo/cluster mass is known



- Biviano et al. 2006: hints that substructured cluster masses are biased high (white points).
- Pinkney et al. 1996: finds virial masses are overestimated by up to a factor of 2 for clusters undergoing mergers.

#### Limitations/Assumptions

1. Compare scaling relations between two different mass proxies for disturbed and relaxed clusters

Substructure/relaxation state (not) correlated for different mass proxies?

2. Use cosmological simulations where halo/cluster mass is known

Have to assume properties such as positions, velocities of mock cluster galaxies are realistic

Introduction

## This project!

## 2. Use cosmological simulations where halo/cluster mass is known



- Biviano et al. 2006: hints that substructured cluster masses are biased high (white points).
- Pinkney et al. 1996: finds virial masses are overestimated by up to a factor of 2 for clusters undergoing mergers.

Aim: test whether masses of dynamically disturbed clusters are measured to the same accuracy and precision as relaxed clusters for a range of galaxy-based cluster mass estimation techniques on the same set of mock clusters. Homogenous, blind test of galaxy-based cluster mass estimation techniques on mock clusters to get a handle on the scatter, biases we can expect from galaxy proxies.



Introduction

Dynamical Substructure

Galaxy Cluster Mass Project

Analysis

**Results & implications** 



Dynamical Substructure

Galaxy Cluster Mass Project

Analysis



Dynamical Substructure

Galaxy Cluster Mass Project

Analysis





Introduction

Dynamical Substructure



Introduction

Dynamical Substructure

#### Galaxy-based mass estimation techniques

#### Step 1 = cluster finding

#### Step 2 = members

#### Step 3 = mass

| Method | Initial Galaxy Selection | Mass Estimation     | Type of data required               | Reference                     |
|--------|--------------------------|---------------------|-------------------------------------|-------------------------------|
| PCN    | Phase space              | Richness            | Spectroscopy                        | Pearson et al. (2015)         |
| PFN*   | FOF                      | Richness            | Spectroscopy                        | Pearson et al. (2015)         |
| NUM    | Phase space              | Richness            | Spectroscopy                        | Mamon et al. (in prep.)       |
| ESC    | Phase space              | Phase space         | Spectroscopy                        | Gifford & Miller (2013)       |
| MPO    | Phase space              | Phase space         | Multi-band photometry, spectroscopy | Mamon et al. (2013)           |
| MP1    | Phase space              | Phase space         | Spectroscopy                        | Mamon et al. (2013)           |
| RW     | Phase space              | Phase space         | Spectroscopy                        | Wojtak et al. (2009)          |
| TAR*   | FOF                      | Phase space         | Spectroscopy                        | Tempel et al. (2014)          |
| PCO    | Phase space              | Radius              | Spectroscopy                        | Pearson et al. (2015)         |
| PFO*   | FOF                      | Radius              | Spectroscopy                        | Pearson et al. (2015)         |
| PCR    | Phase space              | Radius              | Spectroscopy                        | Pearson et al. (2015)         |
| PFR*   | FOF                      | Radius              | Spectroscopy                        | Pearson et al. (2015)         |
| MVM*   | FOF                      | Abundance matching  | Spectroscopy                        | Muñoz-Cuartas & Müller (2012) |
| AS1    | Red Sequence             | Velocity dispersion | Spectroscopy                        | Saro et al. (2013)            |
| AS2    | Red Sequence             | Velocity dispersion | Spectroscopy                        | Saro et al. (2013)            |
| AvL    | Phase space              | Velocity dispersion | Spectroscopy                        | von der Linden et al. (2007)  |
| CLE    | Phase space              | Velocity dispersion | Spectroscopy                        | Mamon et al. (2013)           |
| CLN    | Phase space              | Velocity dispersion | Spectroscopy                        | Mamon et al. (2013)           |
| SG1    | Phase space              | Velocity dispersion | Spectroscopy                        | Sifón et al. (2013)           |
| SG2    | Phase space              | Velocity dispersion | Spectroscopy                        | Sifón et al. (2013)           |
| SG3    | Phase space              | Velocity dispersion | Spectroscopy                        | Lopes et al. (2009)           |
| PCS    | Phase space              | Velocity dispersion | Spectroscopy                        | Pearson et al. (2015)         |
| PFS*   | FOF                      | Velocity dispersion | Spectroscopy                        | Pearson et al. (2015)         |

#### Galaxy-based mass estimation techniques

#### Step 2 = members

| Method | Initial Galaxy Selection |                     |                         |                                          |                        |  |
|--------|--------------------------|---------------------|-------------------------|------------------------------------------|------------------------|--|
| PCN    | Phase space              |                     |                         | Friends-Of-Friend                        | Searson et al. (2015)  |  |
| PFN*   | FOF                      | Richness            | Spectroscopy            | algarithm                                | Pearson et al. (2015)  |  |
| NUM    | Phase space              |                     |                         | aigonthm                                 |                        |  |
| ESC    | Phase space              |                     |                         |                                          |                        |  |
| MPO    | Phase space              |                     |                         |                                          |                        |  |
| MP1    | Phase space              | Phase space         |                         | Phaso space: withi                       | Mamon et al. (2013)    |  |
| RW     | Phase space              | Phase space         | Spectroscopy            | Thase space. within a                    |                        |  |
| TAR*   | FOF                      |                     |                         | certain distance and                     |                        |  |
| PCO    | Phase space              |                     |                         | velocity from cluster aron et al. (2015) |                        |  |
| PFO*   | FOF                      |                     |                         | contro                                   |                        |  |
| PCR    | Phase space              |                     |                         | Centre                                   |                        |  |
| PFR*   | FOF                      |                     |                         |                                          |                        |  |
| MVM*   | FOF                      |                     |                         |                                          |                        |  |
| AS1    | Red Sequence             |                     |                         |                                          |                        |  |
| AS2    | Red Sequence             | Velocity dispersion | Spectroscopy            |                                          | Saro et al. (2013)     |  |
| AvL    | Phase space              | Velocity dispersion | Red sequence: selecting |                                          |                        |  |
| CLE    | Phase space              |                     |                         | galaxies of a certa                      | ain amon et al. (2013) |  |
| CLN    | Phase space              |                     |                         | colour                                   |                        |  |
| SG1    | Phase space              |                     |                         | COIOUI                                   |                        |  |
| SG2    | Phase space              |                     |                         |                                          |                        |  |
| SG3    | Phase space              |                     |                         |                                          |                        |  |
| PCS    | Phase space              |                     |                         |                                          |                        |  |
| PFS*   | FOF                      |                     |                         |                                          |                        |  |

Dynamical Substructure

Galaxy Cluster Mass Project

Analysis

**Results & implications** 

### Galaxy-based mass estimation techniques

#### Step 3 = mass

| Method | Initial Galaxy Selection | Mass Estimation     |                                         |                      |                             |
|--------|--------------------------|---------------------|-----------------------------------------|----------------------|-----------------------------|
| PCN    | Phase space              | Richness            |                                         | 1                    | Pearson et al. (2015)       |
| PFN*   |                          | Richness            | Number of galaxies above a              |                      |                             |
| NUM    |                          | Richness            | Spectroscopy given luminosity threshold |                      |                             |
| ESC    |                          | Phase space         | Spectroscopy                            |                      | Gifford & Miller (2013)     |
| MPO    |                          | Phase space         |                                         |                      |                             |
| MP1    | Phase space              | Phase space         |                                         |                      |                             |
| RW     | Phase space              | Phase space         |                                         |                      |                             |
| TAR*   | Positions &              | Phase space         |                                         |                      |                             |
| PCO    | velocities of            | Radius              |                                         |                      |                             |
| PFO*   | allovios o a             | Radius              | Spectroscopy                            | RMS radius/ DM pro   | ofile metal. (2015)         |
| PCR    | galaxies e.g.,           | Radius              | Spectroscopy f                          | itted to obtain radi | US. son et al. (2015)       |
| PFR*   | caustics                 | Radius              | Spectroscopy                            |                      | Pearson et al. (2015)       |
| MVM*   |                          | Abundance matching  | Spectroscopy                            |                      |                             |
| AS1    |                          | Velocity dispersion | Spectroscopy                            |                      |                             |
| AS2    |                          | Velocity dispersion | Spectroscopy                            | 8                    |                             |
| AvL    |                          | Velocity dispersion |                                         | •<br>• • • • • • •   | on der Linden et al. (2007) |
| CLE    |                          | Velocity dispersion |                                         | Matching using th    | neoretical (2013)           |
| CLN    | Phase space              | Velocity dispersion |                                         | halo mass functio    | n & cluster                 |
| SG1    | Phase space 3            | Velocity dispersion |                                         | r-hand luminosity    | function                    |
| SG2    | $M\propto\sigma^{o}$     | Velocity dispersion |                                         | I-Dana luminosity    | Turretion                   |
| SG3    |                          | Velocity dispersion |                                         |                      |                             |
| PCS    |                          | Velocity dispersion |                                         |                      |                             |
| PFS*   | FOF                      | Velocity dispersion |                                         |                      |                             |

Dynamical Substructure

Galaxy Cluster Mass Project

Analysis

## What did we find?

- Scatter in M<sub>200c</sub> for majority of galaxy-based mass estimation techniques is high, factor of ~2-12.
- Scatter is generally higher for lower mass clusters for majority of methods.
- Methods using same proxy e.g.,  $\sigma$  do not necessarily perform consistently.
- Stronger correlation of the recovered to true  $N_{gal}$  in comparison with  $M_{200c}$ .
- Many methods overestimate high mass clusters implications due to steeply falling cluster mass function.

#### Old+2014, 2015

 We only use data from the SAM (SAGE) catalogue where the dynamical properties of galaxies are taken directly from the underlying N-body dark matter subhaloes, i.e., they retain 'dynamical memory' of the merging history of the clusters (phase-space properties of galaxies have primarily evolved over time due to the influence of gravity).

- We only use data from the SAM (SAGE) catalogue where the dynamical properties of galaxies are taken directly from the underlying N-body dark matter subhaloes, i.e., they retain 'dynamical memory' of the merging history of the clusters (phase-space properties of galaxies have primarily evolved over time due to the influence of gravity).
- We select 943 clusters with  $N_{gal} \ge 20$  from the 968 mock clusters.

- We only use data from the SAM (SAGE) catalogue where the dynamical properties of galaxies are taken directly from the underlying N-body dark matter subhaloes, i.e., they retain 'dynamical memory' of the merging history of the clusters (phase-space properties of galaxies have primarily evolved over time due to the influence of gravity).
- We select 943 clusters with  $N_{gal} \ge 20$  from the 968 mock clusters.
- Clusters are deemed in the substructured sample if either DS or Kappa-test identify substructure: 257 of the 943 clusters (~27%).

- We only use data from the SAM (SAGE) catalogue where the dynamical properties of galaxies are taken directly from the underlying N-body dark matter subhaloes, i.e., they retain 'dynamical memory' of the merging history of the clusters (phase-space properties of galaxies have primarily evolved over time due to the influence of gravity).
- We select 943 clusters with  $N_{gal} \ge 20$  from the 968 mock clusters.
- Clusters are deemed in the substructured sample if either DS or Kappa-test identify substructure: 257 of the 943 clusters (~27%).
- The substructure tests identify a higher fraction substructured clusters as a function of cluster mass.
- We therefore need to control the two samples by mass & (iteratively) randomly select the minimum number of clusters in a given mass bin.

- For each set of sub-samples, we quantify differences between the two samples in terms of the relation between the underlying and recovered clusters masses.
- We perform a likelihood fitting analysis assuming a model where there is a linear relationship between log M<sub>200,rec</sub> and log M<sub>200,true</sub> log and residual offsets in the recovered mass are drawn from a normal distribution.
- We use the parallel-tempered MCMC sampler *emcee* (Foreman & Mackay 2013) to efficiently sample the parameter space & produce posterior probability distributions for the fit parameters.



#### Results!

#### Is there a difference in scatter in the $M_{rec}$ - $M_{true}$ relation?

Is there a difference in scatter in the  $M_{rec}$  -  $M_{true}$  relation?



Introduction

Galaxy Cluster Mass Project

Analysis

Is there a difference in scatter in the  $M_{rec}$  -  $M_{true}$  relation?



| uction D | ynamical Substructure | Galaxy Cluster Mass Project | Analysis | Results & implicat |
|----------|-----------------------|-----------------------------|----------|--------------------|
|----------|-----------------------|-----------------------------|----------|--------------------|

#### Is there a difference in bias in the $M_{rec}$ - $M_{true}$ relation?



#### Bias at M<sub>pivot</sub> for Non subs. clusters



Introduction

#### Is there a difference in bias in the $M_{rec}$ - $M_{true}$ relation?



Bias at M<sub>pivot</sub> for Non subs. clusters



Introduction

## Difference in the slope of the $M_{rec}$ - $M_{true}$ relation?



Old+in prep

Introduction

Galaxy Cluster Mass Project

Analysis

**Results & implications** 

### Difference in the slope of the $M_{rec}$ - $M_{true}$ relation?



Slope of Mrec -Mtrue relation is generally flatter for substructured clusters

Old+in prep

Introduction

Galaxy Cluster Mass Project

Analysis

**Results & implications** 

How would the bias we see translate to shift in cosmo. parameters?

- A simple way to estimate the expected relative bias in  $\Omega_m$  and  $\sigma_8$  is to determine the two cosmological parameters for which the corresponding mass function matches the mass function computed for a fixed, fiducial cosmology, but shifted along the mass axis by a range of mass biases.
- We adopt a Planck cosmology (Planck+2016) with  $\Omega_m$ =0.31 and  $\sigma_8$ =0.83 as a reference model and a universal fitting formula for the mass function from Tinker +2008.

#### Analysis by Radek Wojtak @ SLAC

How does mass bias we see translate to shift in cosmo. parameters?



How does mass bias we see translate to shift in cosmo. parameters?



Introduction

#### Take home points

- Little difference in scatter in Mrec -Mtrue relation for highly-substructured cluster samples\*.
- Small systematic increase (~10%) in bias at the median mass of the sample for all techniques for the subs clusters vs. non-subs clusters.
- Slope of Mrec -Mtrue relation is generally flatter for substructured clusters.
- Is this taking the extreme case? On the one hand yes (comparing subs. vs. non subs), but on the other, no (contamination in non subs. sample).
- Should we exclude galaxy disturbed clusters in dynamical cluster cosmology samples... TBD, but at the very least, we recommend dynamical state properties of used for scaling relations match application samples.