X-ray, SZ & dark matter in Galaxy Clusters

Stefano Ettori INAF-OA / INFN Bologna

(Main) collaborators: D. Eckert, V. Ghirardini, M. Roncarelli, M. Sereno

X-ray, SZ & dark matter in Galaxy Clusters

Stefano Ettori INAF-OA / INFN Bologna

(Main) collaborators: D. Eckert, V. Ghirardini, M. Roncarelli, M. Sereno

R₅₀₀ - limit for XMM/Chandra R₂₀₀ - limit for Suzaku (LEO) 3R₅₀₀ - limit for Planck SZ stack

Problem #1: bkg dominates

Simulation for 3keV cluster @ R200 (Ettori & Molendi arXiv:1005.0382)

Problem #2: n_{gas} (from X-ray) = $deproj(S_b)^{1/2} / C^{1/2}$

Problem #3: Pnon-thermal

X-COP The XMM Cluster Outskirts Project

- X-COP is a *very large program* (PI: Eckert), approved in *XMM-Newton* AO-13 for a total observing time of 1.2 Msec; co-I: Ettori, Molendi, Pointecouteau, Gastaldello, Hurier, Vazza, Roncarelli, Rossetti, Kneib, Paltani, Ghizzardi, De Grandi, Bartelmann Tchernin
- X-COP targets the outer regions of a sample of 13 massive clusters ($M_{500} > 3 \times 10^{14} M_{\odot}$) in the redshift range 0.04-0.1 at uniform depth. The sample was selected based on the signal-to-noise ratio in the *Planck* Sunyaev-Zeldovich (SZ) survey with the aim of combining high-quality X-ray and SZ constraints throughout the entire cluster volume

68.60 68.40 68.20 68.00 67.80 67.60 67.40 67.20 67.00 Right ascension

-12.60 Hydra A/A780

-12.50

140.00

A3158

139.80 139.60 139.40 Right ascension 139.20

139.00

-8.80 9.80

Sec

10.60 10.40 10.20 10.00 Right ascension 11.00 10.80

228.00 227.80 227.60 Right ascension

228.40

27.20

27.00

26.8

228.20

207.80 207.60

A1795

207.40 207.20 207.00 206.80 Right ascension

205.60

125.00 124.80 124.60 124.40 124.20 124.00 123.80 Right ascension

185.00 184.80 184.60 184.40 184.20 184.00 Right ascension

X-COP: A2142 (Tchernin+16)

X-COP: A2142 (Tchernin+16)

X-COP: A2142 (Tchernin+16)

1000

100

Radius [kpc]

$$= \frac{P_T r^2}{1 + \alpha - \frac{P_T r^2}{G M_T \mu m_p n_e}} \frac{d\alpha}{dr}$$

ATHENA

The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

Ettori, Pratt et al., 2013 arXiv1306.2322

How does ordinary matter assemble into the large-scale structures that we see today?

ATHENA

The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

Ettori, Pratt et al., 2013 arXiv1306.2322

How does ordinary matter assemble into the large-scale structures that we see today?

ATHENA

The formation and evolution of clusters and groups of galaxies

How and when was the energy contained in the hot intra-cluster medium generated?

X-COP: Emergent Gravity (Ettori+17)

X-COP: Emergent Gravity (Ettori+17)

In the *Emergent Gravity* (Verlinde 2016),

- *dark energy* dominates our Universe,
- ordinary matter only leads to small perturbations,
- *dark matter* appears as manifestation of an additional gravitational force induced from the "elastic" response due to an entropy displacement, and can be described for a spherically-symmetric, static & isolated system as:

$$\int \frac{G M_{DM,EG}^2}{r^2} dr = \frac{cH_0}{6} r M_B(< r)$$

X-COP: Emergent Gravity (Ettori+17)

Take-home points

- Combining X-ray+SZ profiles is a promising tool to recover (*clumping-free*) cluster physical quantities out to R₂₀₀
- Thanks to high-quality data & radial coverage, mass models will be constrained at few % statistical (& systematic) uncertainties
- Under the assumption that f_{gas} is cosmological, we can assess the level of non-thermal pressure support (~0% in A2142, 40% @R₂₀₀ in A2319)
- More results from X-COP to come (mean properties & "universal" profiles, clumps & metal distribution, ...)

After X-COP, other acronyms that I cannot resist to show...

- CLASH-VLT (PI: Rosati) extending with VLT/MUSE data strong lensing constraints (Caminha+17 arxiv:1707.00690 yesterday- on MACS1206).
- **CLUMP-3D** (Sereno, Ettori et al. 17 MN 467 3801) combining S+WL, Xray & SZ, full 3D analysis of MACS J1206.2-0847, a remarkably regular, faceon, massive obj. **Analysis of 16 CLASH clusters is in progress**.
- **CoMaLit** (Sereno & Ettori 15-17) a Bayesian hierarchical method which deals with statistical errors, selection effects, Eddington/Malmquist biases and time evolution; we apply the method to forecast weak lensing calibrated masses of the Planck, redMaPPer and MCXC clusters.
- **Generalized/physical-SRs** (Ettori+13, 15) define a framework for X-ray/SZ scaling laws that permit to reconstruct M with the lowest scatter (up to 50% lower than the one from standard-SRs). The **self-similar** prediction on **normalization & slope** can fully explain the **observed X-SZ SL** once {**f**_g(**M**), $\beta_P(M)$, **C**} are considered $4\alpha + 3\beta + 2\gamma = 3$

$$F_z M \sim \beta_{\rm P}^{\theta} f_{\rm g}^{-\phi} (F_z^{-1}L)^{\alpha} (F_z M_{\rm g})^{\beta} T^{\gamma} \qquad \begin{array}{l} \theta = \alpha/2 + \gamma \\ \phi = 2\alpha + \beta \end{array}$$