Stellar-to-halo mass relation of cluster galaxies

Anna NIEMIEC PhD student at the Laboratoire d'Astrophysique de Marseille Under the supervision of Eric Jullo and Marceau Limousin

Galaxy Clusters 2017, Santander, 06/07/2017

Hierarchical cluster formation

Hierarchical cluster formation

Yepes et al 2002

See also: *Gillis et al. 2013 Li et al. 2015 Sifón et al. 2015*

HOST

HALO

SUB

HALOES

How is the dark matter halo affected during infall?

We need :

- Projected distance to cluster centre R_{sat} ~ infall redshift (eg vandenBosch 2015)
- Stellar mass ~ infall mass (eg Nagai&Kravtsov 2005)
- Subhalo mass

—> M_{sub}/M_{star} in the inner part of the cluster vs in the outer part

Dark matter halo mass

—> Gravitational lensing

Weak lensing

Weak lensing

Weak lensing

- redMaPPer satellites :
 - 130 deg² CFHT-Stripe82
 - 154 deg² CFHTLenS
 - 138 deg² DES-sv

- 2 parameters classification :
 - Stellar mass ~ infall mass
 - Projected distance to cluster centre ~ environment

—> Stellar masses: Gazpar web service

IogM _{star}	R _{sat}	N _{lenses}	<zlenses></zlenses>
10-10.5	0.1-0.55	4,881	0.35
	0.55-1	1,292	0.37
10.5-11	0.1-0.55	6,935	0.37
	0.55-1	1,836	0.36
11-11.5	0.1-0.55	2,126	0.38
	0.55-1	677	0.36

Galaxy-galaxy lensing

• Excess surface mass density :

 $\Delta \Sigma(R) = \Sigma_{crit} \gamma_t(R)$

 Modeled by NFW profiles, mass-concentration relation from Neto et al. 2007

$$\Delta \Sigma(R) = \Delta \Sigma_{star} + \Delta \Sigma_{1h} + \Delta \Sigma_{host} + \Delta \Sigma_{2h}$$

 Parameters to fit : mass of the subhalos M_{sub} and mass of the host halos M_{host}

Lensing profiles

INNER

OUTER

Stellar mass evolution during infall

No star formation

 $M_{\star,infall} = M_{\star}$

Star formation

 $M_{*,infall} = M_{*} - t_{infall} \times SFR(z_{infall})$

SHMR in the Illustris simulation

Subhaloes

18

Haloes

Conclusions

- Measure of Msub/Mstar for satellites at different cluster centric distances
- redMaPPer satellites & weak lensing surveys: CS82, CFHTLenS, DES-sv
- Dark matter tidal stripping shifts the stellar to halo mass relation to smaller halo masses (arXiv: 1703.03348)
- Future improvements:
 - Need for more data to increase signal/noise
 - Study of coevolution of stellar and dark matter during infall