

The dark matter content of cluster galaxies From LRGs to UDGs Cristóbal Sifón Clusters 2017 Santander, July 2017

w/ Ricardo Herbonnet, Henk Hoekstra, Remco van der Burg

Subhalo: DM counterpart of satellite galaxy

Millenium Simulation (Springel+01)

Abell 611 (Credit: Hubble Frontier Fields, Jennifer Lotz et al.)

Sensitive to cosmology

CDM

WDM

Different than central halos

Not an easy life

Subhalo evolution

Smith+16

Subhalos warp space just a bit more

Subhalo lensing

Strong lensing: very detailed information for single objects

Suyu&Halkola10

 $r_t = 6.0_{-2.0}^{+2.9} \text{ kpc}$

Difference in lensed images for factor 2.5 difference in extent of subhalo

Statistical studies of subhalos

Need to identify satellites individually

10-20% contamination in red sequence/photo-z selections

Velander+14

Need spectroscopy.

Kids x GAMA

- * Kilo-Degree Survey (KiDS):
 - 1,500 deg² ugri @ VST (+VIKING zYJHK @ VISTA)
 - PSF FWHM < 0.8" in r-band, extremely uniform over 1 deg² FoV
 - r-mag < 25.0 (5σ in 2")
 - ⋆ ~5 gal/arcmin2
- * Galaxy And Mass Assembly (GAMA):
 - ~300 deg² AAOmega spectroscopy
 - 98% complete to r-mag = 19.8
- * KiDSxGAMA:
 - 100 deg² (now 240)
 - * 10,000 satellites in ~10^{13.8} M_o clusters at z<0.3

Kuijken+15

MENeaCS

- Multi-Epoch Nearby Cluster
 Survey (MENeaCS):
 - * 55+ X-ray selected clusters, z < 0.15, $M > 10^{14} M_{o}$
 - CFHT/MegaCam, 1 deg², PSF < 0.9"
 - \$ 5,400 spectroscopic members from literature redshifts (SDSS, HeCS, etc)

MENeaCS

- Multi-Epoch Nearby Cluster
 Survey (MENeaCS):
 - * 55+ X-ray selected clusters, z < 0.15, $M > 10^{14} M_{o}$
 - CFHT/MegaCam, 1 deg², PSF < 0.9"
 - 8,000 spectroscopic members from literature redshifts (SDSS, HeCS, etc)
 - Physical PSF & FoV ~ HST @ z=0.5

Radial bias in shape measurements from lens light seen in image simulations

Satellite galaxy-galaxy lensing

KiDSxGAMA (Sifón+15)

Mass segregation

DM segregation (vdBosch+16) + Semi-analytic model (Wang+13) + Mean m* = Factor ~2 segregation

Sifón+17a

 Hydro simulations and SAMs seem to underpredict subhalo masses at intermediate stellar masses

Sifón+17a

How does tidal stripping (and any other effects) affect this relation?

- Subhalo masses similar to central halo masses at same stellar mass
- Mild evidence for a difference at high m*

Sifón+17a

- Subhalo masses similar to central halo masses at same stellar mass
- Mild evidence for a difference at high m*
- Not what we see in hydrodynamical simulations

- UDG: the new buzzword in galaxy evolution
- * m*~10⁸ Msun
- Not new in principle (cf. Malin 1, ca. 1986)
- What's new: they abound in clusters and they are red and smooth

van Dokkum+15

- * m*~10⁸ Msun (~SMC)
- * $r_{eff} > 1.5$ kpc (~MW)
- Not new in principle (cf. Malin 1, ca. 1986)
- What's new: they abound in clusters and they are red and smooth

- Their number increases with cluster mass, with ~200 (!) at Mcl~10¹⁵ M_{sun}.
- They follow the same radial distribution as regular cluster galaxies but disappear in the center
- Are they failed galaxies?

van Dokkum+16

van der Burg+16,17 MENeaCS+KiDS

UDGs are more abundant in massive clusters but avoid the cores

UDG Lensing with MENeaCS

- * 18 CFHT clusters at z<0.1
- * 780 UDGs (r_{eff}>2 kpc)

* Lensing signal consistent with zero within 1σ

The masses of UDGs in context

- Our results put other individual UDG masses in context
- Average UDG mass consistent with simple extrapolation of relation of regular galaxies
- On average, dwarf halo masses; extremes may well be failed galaxies

Conclusions

- We exploit a combination of spectroscopic cluster galaxy catalogs with weak lensing data to obtain a unique view at the galaxysubhalo connection
- No evidence for mass segregation across a range of cluster masses. Consistent with expectations within uncertainties
- Tentative evidence for differences in subhalo-to-stellar mass relation compared to central galaxies and to theoretical predictions
- First direct measurement of average UDG mass: UDGs probably an extension of the normal galaxy population, but possibly with larger scatter in total mass