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Initial State of Inflat

Inflation

What is the initial state of inflation?

Primordial
fluctuations

L Reionization—!

Cosmic microwave
background

[http://www.giantfreakinrobot.com/wp-content /uploads/2014/03/cosmic-inflation.jpg]
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Inflation

Initial State of In

What is the initial state of inflation?

e Standard picture: the initial state is the Bunch-Davies
Vacuum. A vacuum state for a free field in deSitter space.

o Others propose the initial state should be an excited one.
For example:

e Bogoliubov transforms of Bunch-Davies.

o Assuming finite inflation, from a phenomenological
perspective, it is plausible that the initial state is
non-Bunch Davies.

@ We choose a particular type of excited state to analyze: an
entangled state.
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Entangled State

Entangled Gaussian state:
i [CE > YVig T} =
N, (7_)6—5 (Ak(T)CEC_E‘FBIC(T)'Y”’E'Y_E*' Cl,ij (1) [CE’Y_E-F'YE C_,;])

where C}, ;;(7) is the entanglement coefficient between the
gauge invariant scalar inflaton fluctuation (z and the metric

fluctuation 7}? .
o Gaussian coefficients Ag(7) and By(7) — scalar fi(7) and
tensor gx(7) mode functions.



Initial State

Schrodinger Pict

Schrodinger picture QFT — equations of motion for Ay, By, Ck
(on a slow roll background) — fluctuation mode functions.
The functional Schrédinger equation is:

09 (G v 557| = (B + H,p) s [G v 7]

Note, the Hamiltonian’s, HC/? and HwIZ’ for the scalar and tensor
perturbations are decoupled.
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Un-Entangled St

If the entanglement parameter C}, ;;(7) = 0 the gaussian state
becomes,

—L(Ap(1)¢eC 24Br(r)y,, 27
vy [CE Vi 57} = Ni(r)e (At Bty )

!

Equations of motion of Ay (7) and By(7) result in Bunch-Davies
mode functions f2P(r) and gZP (7).

o Initial conditions of the mode functions set their BD value:

Ag(m0) = ABP— fBD (1) and By (1) = BEP— ¢PP (7).
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Entangled State:

How to think of this
state?

The plot a 2D Gaussian
of the form,

Y= Ne_%(Am2+By2)

is an ellipse with axis

determined by A and B.

Here there is no
entanglement between x
and y.

Set Up

Initial State
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Entangled State:

Our state of the form /
b — Ne-HAs+B2420m) | /

is a tilted ellipse with
I'eSpeCt to the T and y — A — e S—
coordinates.

X
This is an entangled \
state in the z and y
coordinates. / \
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Entangled State:

K2

We could redefine the
coordinates T, y such
that the ellipse would no

longer be tilted. \

In these coordinates the

state is not entangled,

however the \

Hamiltonians would have /

a coupling term between / \

Z and g. ~
2.4
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The effects of such an entangled state are seen in:

e two point functions and primordial power spectrum of the
perturbations.
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Observational effe

The effects of such an entangled state are seen in:

@ two point functions and primordial power spectrum of the
perturbations.

e angular power spectra Cj.
o three point functions, i.e. in the level of observable
non-gaussianity in the CMB (in progress).
This will help:
o constrain levels of allowed entanglement.

o It might help explain the large scale (low ) anisotropy
anomaly that appeared in the recent Planck data.
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Angular Power Sy

The final goal is to calculate the temperature fluctuation
angular power spectrum,

dk
Clml’ /—ZIS/—47T/ ZA ]{7 , o Al’ (]C,?]())

/dQﬁPSS/(k)S ljn(l;’ e) g l’m’(f(a e)l

where s = 0, &2, indicates the spin of the perturbation, the
primordial power spectrum is P, and AT (k,no) is the
transfer function that encodes the evolution of the perturbation
after the end of inflation until today.

!"Watanabe, Kanno and Soda: arXiv:1011.3604v3 [astro-ph.CO]
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Angular Power Sy

o In the regular picture there are no cross scalar-tensor terms
in the angular power spectrum.

o In our picture, however, the non zero scalar-tensor two
point functions lead to extra terms in the Cl’s

o In terms of each spin integral Zsy (s.t. C lm l/ ; Z Lss'):

Citimy = Too+ (To2 +I-2-2)
+(Zo—2 +Z_22) + (Zoz + Zoo + Zo—2 + I_20)
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Angular Power Sg

o In the regular picture there are no cross scalar-tensor terms
in the angular power spectrum.

@ In our picture the non zero scalar-tensor two point
functions lead to extra terms in the C’s.

o In terms of each spin integral Z,y (s.t. CLT, =3 T..):
s,s’

Im,l'm’

o 0y dmm/
Cl%ﬂnjjl/m/ = Too+ (Zog +Z_2-9)
+(Za—2 +Z_22) + (Zoz + Zo0 + Zo—2 + Z—20)
06 B s DU B Burs
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Two Entanglemer

We parametrize the entanglement in our state with two
entanglement constants:

o FEntanglement amplitude constant A\ — ”strength of
entanglement”

o Polarization entanglement constant ¢ — ”amount of A or
h« polarization contribution to the entanglement”
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Schrodinger equation —

(C24+ C2,) alr)*eM?

ij _
Cr3;Cf =

1
2 (fe(m)gr())? 4
d
Cho = V2|\i|cosdr  Cxo = V2| \|sin ¢
(Note: ¢ = nm or ¢y = ny where n =0,1,2, o)
d

|)\k|2 CL(T)4€M;LI
C (fe(Mge()? 4

l] —
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Primordial power of scalar (i for different values of A : Ag(k:)

| — A2 (k). A =0.0
‘ ' —  AZ(k), A, =0.05
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Temperature angular power spectrum for different values of Ag
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A Angular

Difference between zero entanglement C{ 7 (A, = 0) and C},"
for different values of A
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Temperature angular power spectrum for different values of ¢y
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Calculation
Results

Difference between zero entanglement C/ 7 (\j, =
for different values of ¢
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C’lTlT for different values of A\, with Planck. Note: our C;’s do
not yet include lensing so higher [ amplitudes are less damped.
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TT at low [ for different values of \; with Planck.

— €, with A, =001, =1/
— ¢y with A, =0.05,6, =7/2
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What are the features that may indicate entanglement?

o Oscillatory features in the angular power spectrum
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What are the features that may indicate entanglement?
o Oscillatory features in the angular power spectrum
e Higher amplitude in the angular power spectrum (as seen
above)

@ Presence off diagonal [ # I’ term in Cy indicating
non-gaussianity.
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Entanglement Fee

What are the features that may indicate entanglement and help
constraint it?

@ Oscillatory features in the angular power spectrum

e Higher amplitude in the angular power spectrum (as seen
above)
@ Presence off diagonal | # I’ term in Cjy indicating
non-gaussianity.
How does address the low [ anomaly?

o Note, so far I assumed same scale of inflation for all curves
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Entanglement Fee

What are the features that may indicate entanglement and help
constraint it?

@ Oscillatory features in the angular power spectrum

e Higher amplitude in the angular power spectrum (as seen
above)

@ Presence off diagonal | # I’ term in Cjy indicating
non-gaussianity.
How does address the low [ anomaly?
o Note, so far I assumed same scale of inflation for all curves

o However, scale of inflation is not yet experimentally set so
it can be treated as a free parameter
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Difference between zero entanglement C{ 7 (A, = 0) and C},"

(with lower inflation scale) for different values of ¢y for low [.

— ACG, for A, =0.05.

— AC; for A, =0.05,

ACTI+ )T [2m[pk® |
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Future Work and

o add lensing

o find constraints on the entanglement parameters A\; and ¢y,
from the Planck data.

o calculate the fy’s to constrain the parameters based
non-gaussianity data constraints.

o Find best fit parameters (entanglement and inflation scale)
that may give a Cj that fits the low [ power deficit (very
speculative)
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The End

The End/La Fine
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Metric and Scala

o The ( is the gauge invariant scalar perturbation to the
inflaton.

@ The metric perturbation +;; is also a physical degree of

freedom, and in terms of the cross x and plus +
polarization fluctuations it can be expressed as:

h+ hX 0
Yij = | hx —hy O
0 0 0

o The z-direction is in the line of sight and ;; is both
traceless 7;; = 0 and divergentless 0;7;; = 0.
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Actions

The actions for the gauge invariant scalar perturbations and the
3-metric perturbation are:

2

M
sc = [ata? [ - mcaﬂcl ,

M2 e
Sy = /d49€ a(t)® [;l u%‘j@“’y”l

where a(t) is the scale factor, € the slow roll parameter and M,
the Plank mass.
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Momentum Space

In momentum space the Hamiltotinans per (decoupled) k mode

are:
R
. - MR I g k202 - H _Hij,kH_E K282
kST T 942 + 9 G Ry = 7 9p2 + o ViRV g
where 5 o
a(7)“M
a2 :a(T)2EM§l, 62 = 7( )4 pl

and the canonical momentum is defined in the usual way as,

5L s s a(t)*M2
Uz = 5 = a(7)"eMpy G, 5= 53 4 ik




P

Mode Equations

Using the Schrodinger equation and doing the change of
variables:
o(T) _ a(7)
iAg(n) = o(r ( B ,
W = O
4 _ 40

B = 5 (

gr(1)  a(7)

we get the following equations of motion for the mode functions
OfC and Yig *
" C.:nCY
. g2 _ (1) _ gk
C fk+< OZ(T) fk’ a252 fk

o 2 B”(T) _ Cij,kclij
”‘“*(k B )" arp
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Mode Equations

Furthermore, the equation for C} yields the relation,

Cij,k(T)C]ij(T) A2

o232 (fe(m)gr(1))?’

where Ay is a constant that parametrizes the entanglement.
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Bunch-Dayvies Init

To later compare to the standard Bunch-Davies initial state
picture, we set our initial state value to be BD:

 ABD (1) = o2(r ED,(T) _ a'(7)
i) = o) ( ),

P (7)

with the Bunch-Davies state being:

—TT 9
Po(r) = YR HD (k) v =5

where H, g) is a Hankel function of the first kind.
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Equations of Mot

The final form of the equations of motions are:

2_1
¢ equation:  f} + | k* + i —)\2
quation: fy + fr =

fro
2 1 2
vy — A
v equation: g + k% + 7724 gk = Q—k,
T fkg

subject to the initial conditions

fu(m0) = fEP(10),  filmo) = R (70)
9k(10) = g°(10),  gr(0) = >’ (10).

with 1/2 = %(1 —ng) + % in terms of the spectral index n, and

Uy = 3 indicating that the tensor perturbations are massless.

[N}
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The Second Entar

As we will see the two-point functions will be expressed in
terms of 2 entanglement parameters. The second parameter is
defined by the following:

o In terms of the polarizations, the matrix

h+e + h><€

X . . ! /
where et are unit matrices that obey é7;é7; = 677 .

o We define C, = C¥ é;; and similarly Cy = C% érs-
o We also define

C+ _ % ﬂ y C><0 af

V2 frak V2 froe
in terms of constants C. o and Ci such that

a2 ,82

fkgk'

|
CyCY = S(CE +C%) = 1
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The Second Entar

@ This leads to
Cto = V2|\|cosdr  Cxo = V2| \|sin ¢y,

where ¢, is the second entanglement parameter that
parametrized the amount of each polarization affected.

@ Moreover we will write the mode functions f; and g in

terms of their magnitudes and phases:

fr. = | frle®re  gp = |gi|eor.



We parametrize the entanglement in our state with two
entanglement constants A\ and ¢g.

o In terms of the polarizations, the metric fluctuation matrix
h+e 4 hxe”, we define Cy = C’”e and
C’X = C’”ew such that

A2 a(7’)4eM;1l
(fe(Tge(r)? 4~

where the entanglement parameter C},;; can be written in
terms of the scalar and tensor mode functions and the first
entanglement parameter \g.

CrijCY = ,(02 +C2) =
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o In addition we define

o 1 Cyo a(T)QVEMgz oo — 1 Cxo a(7'>2\ﬁ]V[§l
T V2 fror 2 T V2 fuok 2

in order to define the second entanglement parameter ¢
with:

Cio = V2[A\r|cos g Cxo = V2| | sin ¢y,

@ The second entanglement constant ¢y, sets the amount of +
or X polarization contribution. In this case, the equations
of motion from the Shrédinger equation, set the values to
either ¢ = nm or ¢ = ng where n=0,1,2,....
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Two Point Functi

o The primordial power spectrum of the inflaton scalar
perturbations ¢ and similarly for the tensor (polarization)
perturbations hy and hy are related to the two point
function by:

— —

(C(R)C(R) = (2m)* P (k)6 (k — ')

@ The two point function of an operator O is defined as
(O?) = Tr [p O?] where p is the density matrix of the
system.

o The density matrix needed is the reduced density matrix of
¢ that has the degrees of freedom related to the other fields
hy and hy traced out.
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Two Point Functi

The two point functions for the perturbations are:

| f)? 1

(Gl = 2eM2 T— 4] [2 cos? (075 + Oyr)
(hz h =) = 4|gk|? 1 — 4| \g|? sin?(¢x) cos® (O px + Ogr)
E+"—k+ a2Mgl 1—4|\)2 cos2(9fk + Og1) )
4 gi|? 1 — 4| Ae|? cos?(dr) cos® (O + Ogr)
<hEX h—EX> =

aQMgl 1 — 4|\g|? cos?(O 5k + Ogi) ’
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Two Point Functi

2 4 frllgrl| x| cos(or)

=h_ hz ¢ ) = —
<Ck R+ T k?+€*k> a2\/EMgl 1 — 4|\ |? COS2(9fk A ng)7

2 4| frllgel| Ae] sin(or)
a?y/eMp 1 — 4|Ag|? cos? (0 7k + Ogi)’

(CGGh_ g T hiCp) =

The primordial power spectrum for each perturbation is of the
form:

k3
2 —
Aap(k;) = D) (précp,fﬁ |'r—>0—
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