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Inflation

Initial State of Inflation?

What is the initial state of inflation?

[http://www.giantfreakinrobot.com/wp-content/uploads/2014/03/cosmic-inflation.jpg]
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Inflation

Initial State of Inflation?

What is the initial state of inflation?

Standard picture: the initial state is the Bunch-Davies
Vacuum. A vacuum state for a free field in deSitter space.

Others propose the initial state should be an excited one.
For example:

Bogoliubov transforms of Bunch-Davies.

Assuming finite inflation, from a phenomenological
perspective, it is plausible that the initial state is
non-Bunch Davies.

We choose a particular type of excited state to analyze: an
entangled state.
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Initial State

Entangled State

Entangled Gaussian state:

Ψ~k

[
ζ~k , γij,~k ; τ

]
=

Nk(τ)e
− 1

2

(
Ak(τ)ζ~kζ−~k+Bk(τ)γij,~kγ

ij

−~k
+ Ck,ij(τ)

[
ζ~kγ

ij

−~k
+γij

~k
ζ−~k

])
where Ck,ij(τ) is the entanglement coefficient between the
gauge invariant scalar inflaton fluctuation ζ~k and the metric

fluctuation γij~k
.

Gaussian coefficients Ak(τ) and Bk(τ) → scalar fk(τ) and
tensor gk(τ) mode functions.
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Initial State

Schrödinger Picture QFT

Schrödinger picture QFT → equations of motion for Ak, Bk, Ck
(on a slow roll background) → fluctuation mode functions.
The functional Schrödinger equation is:

i∂τΨ~k

[
ζ~k , γij,~k ; τ

]
=
(
H
ζ~k

+H
γ~k

)
Ψ~k

[
ζ~k , γij,~k ; τ

]
Note, the Hamiltonian’s, H

ζ~k
and H

γ~k
, for the scalar and tensor

perturbations are decoupled.
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Initial State

Un-Entangled State

If the entanglement parameter Ck,ij(τ) = 0 the gaussian state
becomes,

Ψ~k

[
ζ~k , γij,~k ; τ

]
= Nk(τ)e

− 1
2

(
Ak(τ)ζ~kζ−~k+Bk(τ)γij,~kγ

ij

−~k

)
↓

Equations of motion of Ak(τ) and Bk(τ) result in Bunch-Davies
mode functions fBDk (τ) and gBDk (τ).

Initial conditions of the mode functions set their BD value:

Ak(τ0) = ABDk → fBDk (τ) and Bk(τ0) = BBD
k → gBDk (τ).
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Initial State

Entangled State: Closer Look

How to think of this
state?

The plot a 2D Gaussian
of the form,

ψ = Ne−
1
2
(Ax2+By2)

is an ellipse with axis
determined by A and B.

Here there is no
entanglement between x
and y.
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Initial State

Entangled State: Closer Look

Our state of the form

ψ = Ne−
1
2
(Ax2+By2+2Cxy)

is a tilted ellipse with
respect to the x and y
coordinates.

This is an entangled
state in the x and y
coordinates.
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Initial State

Entangled State: Closer Look

We could redefine the
coordinates x̃, ỹ such
that the ellipse would no
longer be tilted.

In these coordinates the
state is not entangled,
however the
Hamiltonians would have
a coupling term between
x̃ and ỹ.
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Initial State

Observational effects of Entanglement

The effects of such an entangled state are seen in:

two point functions and primordial power spectrum of the
perturbations.

angular power spectra Cl.

three point functions, i.e. in the level of observable
non-gaussianity in the CMB (in progress).
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Initial State

Observational effects of Entanglement

The effects of such an entangled state are seen in:

two point functions and primordial power spectrum of the
perturbations.

angular power spectra Cl.

three point functions, i.e. in the level of observable
non-gaussianity in the CMB (in progress).

This will help:

constrain levels of allowed entanglement.

It might help explain the large scale (low l) anisotropy
anomaly that appeared in the recent Planck data.
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Calculation
Results

Angular Power Spectra

The final goal is to calculate the temperature fluctuation
angular power spectrum,

CTTlm,l′m′ =
∑
s,s′

Iss′ = 4π

∫
dk

k

∑
s,s′

∆T
l,s(k, η0)∆

T
l′,s′(k, η0)∫

dΩk̂P
ss′(k)−sY

∗
lm(k̂, e)−s′Yl′m′(k̂, e)1

where s = 0,±2, indicates the spin of the perturbation, the
primordial power spectrum is P ss

′
, and ∆T

l,s(k, η0) is the
transfer function that encodes the evolution of the perturbation
after the end of inflation until today.

1Watanabe, Kanno and Soda: arXiv:1011.3604v3 [astro-ph.CO]
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Calculation
Results

Angular Power Spectra Differences

In the regular picture there are no cross scalar-tensor terms
in the angular power spectrum.

In our picture, however, the non zero scalar-tensor two
point functions lead to extra terms in the Cl’s.

In terms of each spin integral Iss′ (s.t. CTTlm,l′m′ =
∑
s,s′
Iss′):

CTTlm,l′m′ = I00 + (I22 + I−2−2)
+(I2−2 + I−22) + (I02 + I20 + I0−2 + I−20)
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Calculation
Results

Angular Power Spectra Differences

In the regular picture there are no cross scalar-tensor terms
in the angular power spectrum.

In our picture the non zero scalar-tensor two point
functions lead to extra terms in the Cl’s.

In terms of each spin integral Iss′ (s.t. CTTlm,l′m′ =
∑
s,s′
Iss′):

CTTlm,l′m′ =

∝ δll′ δmm′︷ ︸︸ ︷
I00 + (I22 + I−2−2)
+(I2−2 + I−22) + (I02 + I20 + I0−2 + I−20)︸ ︷︷ ︸

∝ δmm′ but�∝ δll′
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Calculation
Results

Two Entanglement Parameters

We parametrize the entanglement in our state with two
entanglement constants:

Entanglement amplitude constant λk → ”strength of
entanglement”

Polarization entanglement constant φk → ”amount of h+ or
h× polarization contribution to the entanglement”
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Calculation
Results

Two Entanglement Parameters

Schrödinger equation →

Ck,ijC
ij
k =

1

2

(C2
+0 + C2

×0)

(fk(τ)gk(τ))2
a(τ)4εM4

pl

4
.

↓

C+0 =
√

2|λk| cosφk C×0 =
√

2|λk| sinφk
(Note: φk = nπ or φk = nπ2 where n = 0, 1, 2, ...)

↓

Ck,ijC
ij
k =

|λk|2

(fk(τ)gk(τ))2
a(τ)4εM4

pl

4
.
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Calculation
Results

Primordial Power

Primordial power of scalar ζk for different values of λk : ∆2
ζ(k)
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Calculation
Results

Angular Power Spectra (l = l′)

Temperature angular power spectrum for different values of λk
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Calculation
Results

∆ Angular Power Spectra (l = l′)

Difference between zero entanglement CTTl (λk = 0) and CTTl,l
for different values of λk
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Calculation
Results

Angular Power Spectra (l = l′)

Temperature angular power spectrum for different values of φk
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Calculation
Results

∆ Angular Power Spectra (l = l′)

Difference between zero entanglement CTTl (λk = 0) and CTTl,l
for different values of φk
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Calculation
Results

Angular Power Spectrum (l = l′) with Planck

CTTl,l for different values of λk with Planck. Note: our Cl’s do
not yet include lensing so higher l amplitudes are less damped.
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Calculation
Results

Angular Power Spectra (l = l′). Low l

CTTl,l at low l for different values of λk with Planck.
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Calculation
Results

Entanglement Features

What are the features that may indicate entanglement?

Oscillatory features in the angular power spectrum

Higher amplitude in the angular power spectrum (as seen
above)

Presence off diagonal l 6= l′ term in Cll′ indicating
non-gaussianity.
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Calculation
Results

Entanglement Features

What are the features that may indicate entanglement and help
constraint it?

Oscillatory features in the angular power spectrum

Higher amplitude in the angular power spectrum (as seen
above)

Presence off diagonal l 6= l′ term in Cll′ indicating
non-gaussianity.

How does address the low l anomaly?

Note, so far I assumed same scale of inflation for all curves

However, scale of inflation is not yet experimentally set so
it can be treated as a free parameter
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Calculation
Results

Shifted Inflation Scale Cl

Difference between zero entanglement CTTl (λk = 0) and CTTl,l
(with lower inflation scale) for different values of φk for low l.
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Calculation
Results

Future Work and Improvements

add lensing

find constraints on the entanglement parameters λk and φk
from the Planck data.

calculate the fNL’s to constrain the parameters based
non-gaussianity data constraints.

Find best fit parameters (entanglement and inflation scale)
that may give a Cl that fits the low l power deficit (very
speculative)
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Calculation
Results

The End

The End/La Fine
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BackUp
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Metric and Scalar Perturbations

The ζ is the gauge invariant scalar perturbation to the
inflaton.

The metric perturbation γij is also a physical degree of
freedom, and in terms of the cross × and plus +
polarization fluctuations it can be expressed as:

γij =

 h+ h× 0
h× −h+ 0
0 0 0


The z-direction is in the line of sight and γij is both
traceless γii = 0 and divergentless ∂iγij = 0.
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Actions

The actions for the gauge invariant scalar perturbations and the
3-metric perturbation are:

Sζ =

∫
d4x a(t)3

[
εM2

pl

2
∂µζ∂

µζ

]
,

Sγ =

∫
d4x a(t)3

[
M2
pl

8
∂µγij∂

µγij

]′
where a(t) is the scale factor, ε the slow roll parameter and Mpl

the Plank mass.
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Momentum Space Hamiltonians

In momentum space the Hamiltotinans per (decoupled) k mode
are:

H~k,ζ =
Π~kζ

Π−~kζ
2α2

+
k2α2

2
ζ~kζ−~k, H~k,γ =

Π
ij,~k

Πij

−~k
2β2

+
k2β2

2
γ
ij,~k
γij
−~k

where

α2 = a(τ)2εM2
pl, β2 =

a(τ)2M2
pl

4

and the canonical momentum is defined in the usual way as,

Π~k,ζ
=
δL
δζ̇

= a(τ)2εM2
plζ~k, Π

ij,~k
=

δL
δγ̇ij

=
a(τ)2M2

pl

4
γ
ij,~k
.
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Mode Equations

Using the Schrödinger equation and doing the change of
variables:

iAk(η) = α2(τ)

(
f ′k(τ)

fk(τ)
− a′(τ)

a(τ)

)
,

iBk(η) = β2(τ)

(
g′k(τ)

gk(τ)
− a′(τ)

a(τ)

)
.

we get the following equations of motion for the mode functions
of ζ and γij :

ζ : f ′′k +

(
k2 − α′′(τ)

α(τ)

)
fk =

Cij,kC
ij
k

α2β2
fk

γ : g′′k +

(
k2 − β′′(τ)

β(τ)

)
gk =

Cij,kC
ij
k

α2β2
gk
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Mode Equations

Furthermore, the equation for Ck yields the relation,

Cij,k(τ)Cijk (τ)

α2β2
=

λ2k
(fk(τ)gk(τ))2

,

where λk is a constant that parametrizes the entanglement.
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Bunch-Davies Initial Conditions

To later compare to the standard Bunch-Davies initial state
picture, we set our initial state value to be BD:

iABDk (τ) = α2(τ)

(
fBD′k (τ)

fBDk (τ)
− a′(τ)

a(τ)

)
,

with the Bunch-Davies state being:

fBD
k (τ) =

√
−τπ
2

H(1)
νζ

(−kτ), νϕ =

√
9

4
−
m2
ζ

H2
I

where H
(1)
νζ is a Hankel function of the first kind.
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Equations of Motion and Initial Conditions

The final form of the equations of motions are:

ζ equation: f ′′k +

(
k2 +

ν2ζ −
1
4

τ2

)
fk =

λ2k
fkg

2
k

,

γ equation: g′′k +

(
k2 +

ν2γ − 1
4

τ2

)
gk =

λ2k
f2kgk

,

subject to the initial conditions

fk(τ0) = fBD
k (τ0), f ′k(τ0) = fBD′

k (τ0)

gk(τ0) = gBD
k (τ0), g′k(τ0) = gBD′

k (τ0).

with ν2ζ = 3
2(1− ns) + 9

4 in terms of the spectral index ns and

νγ = 3
2 indicating that the tensor perturbations are massless.
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The Second Entanglement Parameter

As we will see the two-point functions will be expressed in
terms of 2 entanglement parameters. The second parameter is
defined by the following:

In terms of the polarizations, the matrix

γij = h+ê
+
ij + h×ê

×
ij

where ê+,×ij are unit matrices that obey êσij ê
σ′
ij = δσσ

′
.

We define C+ = Cij ê+ij and similarly C× = Cij ê×ij .
We also define

C+ =
C+0√

2

αβ

fkgk
C× =

C×0√
2

αβ

fkgk

in terms of constants C+0 and C×0 such that

CijC
ij =

1

2
(C2

+ + C2
×) = λ2k

α2β2

f2kg
2
k

.
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The Second Entanglement Parameter

This leads to

C+0 =
√

2|λk| cosφk C×0 =
√

2|λk| sinφk

where φk is the second entanglement parameter that
parametrized the amount of each polarization affected.

Moreover we will write the mode functions fk and gk in
terms of their magnitudes and phases:

fk = |fk|eiθfk gk = |gk|eiθgk .
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Two Entanglement Parameters

We parametrize the entanglement in our state with two
entanglement constants λk and φk.

In terms of the polarizations, the metric fluctuation matrix
γij = h+ê

+
ij + h×ê

×
ij , we define C+ = Cij ê+ij and

C× = Cij ê×ij such that

Ck,ijC
ij
k =

1

2
(C2

+ + C2
×) =

λ2k
(fk(τ)gk(τ))2

a(τ)4εM4
pl

4
.

where the entanglement parameter Ck,ij can be written in
terms of the scalar and tensor mode functions and the first
entanglement parameter λk.
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Two Entanglement Parameters

In addition we define

C+ =
1√
2

C+0

fkgk

a(τ)2
√
εM2

pl

2
C× =

1√
2

C×0
fkgk

a(τ)2
√
εM2

pl

2

in order to define the second entanglement parameter φk
with:

C+0 =
√

2|λk| cosφk C×0 =
√

2|λk| sinφk

The second entanglement constant φk sets the amount of +
or × polarization contribution. In this case, the equations
of motion from the Shrödinger equation, set the values to
either φk = nπ or φk = nπ2 where n = 0, 1, 2, ....
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Two Point Function and Density Matrix

The primordial power spectrum of the inflaton scalar
perturbations ζ and similarly for the tensor (polarization)
perturbations h+ and h× are related to the two point
function by:

〈ζ(~k)ζ(~k′)〉 = (2π)3Pζ(k)δ3(~k − ~k′)

The two point function of an operator O is defined as
〈O2〉 = Tr

[
ρ O2

]
where ρ is the density matrix of the

system.

The density matrix needed is the reduced density matrix of
ζ that has the degrees of freedom related to the other fields
h+ and h× traced out.
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Two Point Functions

The two point functions for the perturbations are:

〈ζ~kζ−~k〉 =
|fk|2

a2εM2
pl

1

1− 4|λk|2 cos2(θfk + θgk)
,

〈h~k+h−~k+〉 =
4|gk|2

a2M2
pl

1− 4|λk|2 sin2(φk) cos2(θfk + θgk)

1− 4|λk|2 cos2(θfk + θgk)
,

〈h~k×h−~k×〉 =
4|gk|2

a2M2
pl

1− 4|λk|2 cos2(φk) cos2(θfk + θgk)

1− 4|λk|2 cos2(θfk + θgk)
,
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Two Point Functions

〈ζ~kh−~k+ + h~k+ζ−~k〉 = − 2

a2
√
εM2

pl

4|fk||gk||λk| cos(φk)

1− 4|λk|2 cos2(θfk + θgk)
,

〈ζ~kh−~k× + h~k×ζ−~k〉 = − 2

a2
√
εM2

pl

4|fk||gk||λk| sin(φk)

1− 4|λk|2 cos2(θfk + θgk)
.

The primordial power spectrum for each perturbation is of the
form:

∆2
ϕ(k) ≡ k3

2π2
〈ϕ~kϕ−~k〉 |τ→0−
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