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Normally when one talks about reheating, one starts 
by writing down couplings which leads to decay 
rates 

but this is difficult because 1. we don’t know who 
the inflaton couples to and how strongly and  

2. solving especially during preheating requires non-
perturbative out of equilibrium thermal QFT, which 
can and have been worked on numerically but… 

It’s nice, to have an easy and analytic way to make 
general predictions about reheating. 



instead of supposing couplings, we ignore all the 
microphysical details, and instead frame everything in 
terms of an average equation of state, wre.  

gives simple way of characterizing reheating 

!

First start by relating inflation parameters to reheating 
parameters. 



starting from conservation of energy, can relate the energy density at 
the start of reheating to the energy density at the end: 
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going to use efolding as unit of time, even though not inflating, still 
valid unit of time… 

if one picks an inflationary model, then know the energy density at 
the end of inflation 

can relate to the temp at the end of reheating… 
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so relating details about inflation, but to solve for Nre and Tre 
separately, need more information
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what we don’t know is how many 
modes reenter during reheating, and 
how many during radiation dom. 
Know the subsequent matter/ dark 
energy phase. So equation gets these 
2 unknown: Nre and Nradiation  

next piece of info to relate inflation 
parameters to reheating is basically the 
solution to the horizon problem. 

aka the largest CMB modes, l = 2, 
should correspond to the size of the 
horizon today 

Once one chooses a model of inflation, 
Nl=2 can be calculated, which tells how  
many comoving scales left the horizon 
during inflation. This must = how many 
comoving scales must have reentered the 
horizon after inflation -> the horizon 
problem.
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relates reheating 
parameter

to inflation parameters
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gives precise 
prediction for 

ns

pick a model and an equation of state, get out predictions for 
reheating
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polynomial inflation, φα

wre = -1/3 
wre = 0 

wre = 1/3 
wre = 1 

Think main strength of 
this technique is not to 
constrain reheating, but 
to use reasonable 
reheating bounds to 
constrain inflation.



a lot of the work using these methods has focused on wre = 0, especially to 
give bounds on Tre. 

Think main reason for this: if you do simplest case, ignore preheating, and 
write inflaton equation with constant decay rate, then find the average wre 
can come out close to 0.  

Think if your model allows for efficient preheating phase, wre near 1/3 might 
be more accurate. 

studies that have considered inflation with short preheating phase, tend to 
predict wre shooting up to close to 1/3 very quickly and then slowly 
increasing the rest of way to 1/3. 

then you can’t really conclude anything about the temperature. But you do 
get a very precise prediction for ns. 
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wre = 0.22 
wre = 1/3get tight 

predictions for ns if wre ≈ 1/3, 
ns ≈ 0.965



φ2

so a solution with 0 < 
wre < 1/3  

would fall in the red 
region

wre > 1 
 wre > 1/3  
wre < 1/3 
wre < 0 

(everything evaluated at Planck’s 
pivot, l ~ 686)

0.14 < r < 0.18 
44 < Nk < 57 

r > 0.11 
!note 2 σ limit from joint BICEP/ 

Planck analysis: r < 0.12 



Starobinsky model 
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apply a conformal transformation:
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end up with single field model with potential
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Higgs Inflation:	
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same idea… apply conformal transformation…

then rewrite in terms of new canonically normalizable field, and using 
a few approximations…
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Said take approximations… potential not the same at low scales, but it 
same at inflation scales. So expect if one modeled exact reheating 
dynamics, would get different behavior.  

But said reheating predictions assuming constant equation of state just 
depends on inflation predictions…  

so since at inflation scales have same potential, find same predictions for 
reheating parameter space when parametrized in terms of an average 
equation of state).  

Idea is, the allowed parameter space as a function of wre is the same, but 
the most likely wre for each model is likely different.



Starobinsky/ Higgs inflation model	


wre > 1 
 wre > 1/3  
wre < 1/3 
wre < 0 

and solution with 0 < wre < 1/3  
would fall in the red region

0.953 < ns < 0.964 
0.004 < r < 0.007 

42 < Nk < 56



Also considered hilltop model…

V = M4
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if p even, looks like: if p odd, looks like:

so potential starts very flat, gets steeper

note 2 free parameters now, will draw out shape instead 
of line in ns vs. r plane



wre > 1 
 wre > 1/3  
wre < 1/3 
wre < 0 

V = M4
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using Planck’s 2 σ bounds 
on ns: 

wre < 1/3 gives:  
p= 2   r > 0.02 

p=3      r > 0.007 
p=4   r > 0.003 



natural inflation
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again have 2 free parameters

wre > 1 
 wre > 1/3  
wre < 1/3 
wre < 0 

wre < 1/3 gives r > 0.05 
and favors ns < Planck’s central value 



Planck’s 1 and 2 sigma 
bounds from TT, TE, 

EE + lowP 
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