Direct Detection of sub-GeV Dark Matter

Rouven Essig

Yang Institute for Theoretical Physics

* Stony Brook University

Cosmo Cruise, 6 Sept, 2015

Direct Detection below 1 GeV?

1310.8327

Direct Detection below 1 GeV?

Yes, we can probe down to ~1 MeV!

An ongoing program

- "Direct Detection of sub-GeV Dark Matter", 1108.5383, PRD RE, Mardon, Volansky
- "First Direct Detection Limits on sub-GeV Dark Matter from XENON10", 1206.2644, PRL RE, Manalaysay, Mardon, Sorensen, Volansky
- "Direct Detection of sub-GeV DM with Semiconductor Targets", 1509.xxxxx (Tuesday)
 New RE, Fernandez-Serra, Jeremy Mardon, Adrian Soto, Volansky, Tien-Tien Yu

In progress:

- "Direct Detection of sub-GeV DM with Scintillators", Derenzo, RE, Andrea Massari, Tien-Tien Yu
- "Search for sub-GeV Dark Matter with XENON100", XENON100 Collaboration w/ RE, Mardon, Volansky
- "Detection of Weakly Interacting Particles via Molecular Excitations", RE, Mardon, Oren Slone, Volansky

+ ongoing discussions w/ various other experimental groups...

See also:

- Graham, Kaplan, Rajendran, Walters, "Semiconductor Probes of Light Dark Matter", 1203.2531, PDU
- Va'vra, "Molecular excitations: a new way to detect Dark matter", 1402.0466, PLB
- Hochberg, Zhao, Zurek, "Superconducting Detectors for Super Light Dark Matter", 1504.07237
- Lee, Lisanti, Mishra-Sharma, Safdi, "Modulation Effects in Dark Matter-Electron Scattering Experiments", 1508.07361

Outline

intro + motivation

- strategy & current constraints
- future prospects

The WIMP Paradigm

The search for DM is dominated by the search for Weakly Interacting Massive Particles (WIMPs) ~ 5-1000 GeV

- theoretically motivated (e.g. appears in supersymmetry)
- naturally have correct relic abundance ("WIMP miracle")
- experimentally testable

Beyond the WIMP Paradigm

- many other DM candidates exist
- no clear evidence for WIMPs (yet?)
- no new physics at the LHC (yet?)
- several challenges ("small-scale crisis of cold DM")

Must search broadly for DM!

Beyond WIMPs: MeV-to-GeV mass Dark Matter

(an old idea, e.g. Boehm, Fayet, ...)

below conventional WIMP scale; above scale for which cosmological constraints can be important

natural, viable candidates exist

rich phenomenology (like WIMPs)

today, focus on direct detection

Outline

- intro + motivation
- strategy & current constraints
 - future prospects

Cannot use elastic nuclear recoils for detection

Light DM $\lesssim 1~{\rm GeV}$

Atom

Cannot use elastic nuclear recoils for detection

Light DM $\lesssim 1~{ m GeV}$

Cannot use elastic nuclear recoils for detection

But DM could also scatter off electrons!

Atom

But DM could also scatter off electrons!

this can transfer most of DM energy

Signal: one or a few electrons

DM-electron scattering

 Noble liquids (xenon, argon, helium) threshold ~ 10 eV

 Semiconductor targets (germanium, silicon) threshold ~ 1 eV (band gap)

DM-electron scattering

 Noble liquids (xenon, argon, helium) threshold ~ 10 eV

sensitive to $m_{\rm DM} \sim 10~{\rm MeV}$

Done w/ XENON10 data!

But significant improvements possible

 Semiconductor targets (germanium, silicon) threshold ~ 1 eV (band gap)

sensitive to $m_{\rm DM} \sim 1 \ {\rm MeV}$

Requires continued R&D to reach low threshold, but very promising

DM-electron scattering

 Noble liquids (xenon, argon, helium) threshold ~ 10 eV

sensitive to $m_{\rm DM} \sim 10~{\rm MeV}$

Done w/ XENON10 data!

But significant improvements possible

 Semiconductor targets (germanium, silicon) threshold ~ 1 eV (band gap)

sensitive to $m_{\rm DM} \sim 1~{\rm MeV}$

Requires continued R&D to reach low threshold, but very promising

detector schematic

 F_{2}

Xe liquid (~14 kg)

PMT's

operated for ~1 year in 2006/2007

was sensitive to single electrons (exposure 15 kg-days)!

Proof-of-principle for direct detection down to DM masses of a few MeV

Outline

- intro + motivation
- strategy & current constraints
- future prospects
 - noble gases
 - semiconductors

Prospects for noble liquids

RE, Mardon, Volansky

possible improvements by XENON100, LUX, ...

Prospects for semiconductors

can potentially reach very low masses!

Calculating rates accurately is challenging

electrons are part of interacting many-body system

• analytic approximation — how accurate?

Graham et.al.

Lee, Lisanti, Mishra-Sharma, Safdi

RE, Mardon, Volansky

numerical approach

RE, Fernandez-Serra, Mardon, Adrian Soto, Volansky, Tien-Tien Yu (1509.xxxx)

http://ddldm.physics.sunysb.edu

Recoil energy spectrum

RE, Fernandez-Serra, Mardon, Adrian Soto, Volansky, Tien-Tien Yu (1509.xxxx)

Lowering threshold gives HUGE increase in rate

Sensitivity increases dramatically for lower thresholds

RE, Fernandez-Serra, Mardon, Adrian Soto, Volansky, Tien-Tien Yu (1509.xxxx)

Prospects for upcoming experiments

RE, Fernandez-Serra, Mardon, Adrian Soto, Volansky, Tien-Tien Yu (1509.xxxx)

Other direct detection avenues for sub-GeV DM

excitation

S. Derenzo, RE, Andrea Massari, Tien-Tien Yu (work in progress)

• molecular dissociation

RE, Mardon, Oren Slone, Volansky (work in progress)

see also Va'vra

Other direct detection avenues for sub-GeV DM

S. Derenzo, RE, Andrea Massari, Tien-Tien Yu (work in progress)

• molecular dissociation

RE, Mardon, Oren Slone, Volansky (work in progress)

see also Va'vra

Example: Excitons in scintillating crystals

• DM creates exciton

adapted from www.lanl.gov/science/1663/june2010/story2a.shtml

Example: Excitons in scintillating crystals

adapted from www.lanl.gov/science/1663/june2010/story2a.shtml

- DM creates exciton
- Exciton de-excites

Signal: one (or a few) photons

Summary

- sub-GeV DM is a motivated, viable possibility
- excellent prospects for direct detection experiments
- many opportunities for significant progress over next few years

