Superluminality and EFT

Garrett Goon

DAMTP, University of Cambridge

September 8, 2015

With Kurt Hinterbichler (in progress)

Outline

- Massive GR, DGP and galileons are three related modifications of gravity.
- Rich phenomenology from a simple Effective Field Theory (EFT).
- But also troubling *superluminality*.
- Would like to compare to another system.

Outline

- Massive GR, DGP and galileons are three related modifications of gravity.
- Rich phenomenology from a simple Effective Field Theory (EFT).
- But also troubling *superluminality*.
- Would like to compare to another system.
- **QED**! Surprisingly, also exhibits "superluminality."
- Qualitative differences exist.
- Study sheds light on *both* modified gravity and QED.

Modified Gravity

- Late time acceleration very exciting (and confusing).
- Long distance effect \longrightarrow long distance modification?
- Two common ideas:
 - **1** Self acceleration (no Λ).
 - **2** Degravitation (screened Λ).
- Generically, new *light* DOF are needed, but must be hidden.
- Massive GR (mGR), DGP and galileons each hide in the same way.

Example: dRGT Massive GR

- Adding a mass to GR is a natural step to take.
- New long distance scale $m^{-1} \sim H_0^{-1}$.
- Surprisingly hard to make consistent, even classically (dRGT, 2010)
- New DOF hidden via non-linearities.
- Same non-linearities: superluminality. Generic to Vainshtein.

Cubic Galileon: The Bright Side

$$\mathcal{L} = -\frac{1}{2} (\partial \pi)^2 - \frac{1}{\Lambda^3} (\partial \pi)^2 \Box \pi + \frac{\pi}{M_{pl}} T^{\mu}{}_{\mu}$$

$$\bigvee \sim \left(\frac{r}{r_V}\right)^{3/2} V_N \qquad V_N \sim \frac{1}{r}$$

$$r_V$$

- Physics captured by *galileon* EFT. $\pi \leftrightarrow$ longitudinal mode.
- Fifth force shuts off below $r_V = \Lambda^{-1} \left(M/M_{pl} \right)^{1/3}$. "Vainshtein."
- For us, $\Lambda^{-1} \sim 10^3$ km, $r_V^{\odot} \sim 200$ pc ($\gg 10^{-4}$ pc).

Cubic Galileon: The Dark Side

• In a race, $\Delta d \sim r_V \gg \Lambda^{-1}$. "Macroscopic" superluminality.

Garrett Goon (DAMTP)

 π

- How bad is this?
- Would like to compare to another EFT theory we trust.

- How bad is this?
- Would like to compare to another EFT theory we trust.
- QED! (Drummond and Hathrell, 1980)
- Similar effect occurs for photon propagation in QED near black holes.
- Due to *e⁻* induced non-minimal photon-gravity couplings.

The Drummond-Hathrell EFT

- If e^{-1} 's aren't important, work with the EFT above.
- Any term with $F_{\mu\nu}$ can alter photon propagation.
- Last term gives the biggest effect on BH backgrounds.

The Drummond-Hathrell Effect

- Similar to mGR/DGP/galileons, but qualitative differences.
- Photons can be "superluminal" in the angular direction.

• In a race,
$$\Delta d \sim m^{-1} e^2 rac{r_S^2}{L^2} \ll m^{-1}.$$

Is this superluminality even real?

Garrett Goon (DAMTP)

The Majumdar-Papapetrou Solutions

- We try to build "macroscopic" superluminality in QED, $\Delta d \gg m^{-1}$
- Simple setup: Add many extremal Reissner-Nordstrom black holes.

- An **exact** solution of *pure* Einstein-Maxwell (no *e*⁻'s!).
- GR attraction and EM repulsion perfectly balanced.
- What stops superluminality here? Is $QED \cong mGR/DGP/Galileons$? Garrett Goon (DAMTP) September 8, 2015 10 / 14

Our Setup: A Tunnel of BHs

- Easiest to consider pairs of BH's.
- Now, Δd scales with number of pairs.
- Does QED protect itself?

Our Setup: Destabilization

- No longer an exact solution with e^{-1} 's.
 - Find perturbative corrections using $\mathcal{L} = M_{\rho l}^2 R - \frac{1}{4e^2} F_{\mu\nu}^2 + \frac{c_2}{m^2} R_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma} + \dots$
- New force destabilizes the setup: $\delta F \sim \frac{1}{r^5}$.
- At maximum, $\Delta d \approx e \times m^{-1}$.
- Qualitatively differs from mGR/DGP/galileons.
- Indication that the DH effect is an artifact.

• mGR/DGP/galileons superluminality is different than in other EFT's.

- mGR/DGP/galileons superluminality is different than in other EFT's.
- Main difference: easy to achieve $\Delta d \gg \Lambda^{-1}$.

- mGR/DGP/galileons superluminality is different than in other EFT's.
- Main difference: easy to achieve $\Delta d \gg \Lambda^{-1}$.
- Indicative of r_V as the true cutoff? Hard to get $\Delta d \gg r_V$.

- mGR/DGP/galileons superluminality is different than in other EFT's.
- Main difference: easy to achieve $\Delta d \gg \Lambda^{-1}$.
- Indicative of r_V as the true cutoff? Hard to get $\Delta d \gg r_V$.
- Otherwise, closed timelike curves may simply never form.

- mGR/DGP/galileons superluminality is different than in other EFT's.
- Main difference: easy to achieve $\Delta d \gg \Lambda^{-1}$.
- Indicative of r_V as the true cutoff? Hard to get $\Delta d \gg r_V$.
- Otherwise, closed timelike curves may simply never form.
- Study furnishes a neat demonstration of how a real world EFT protects itself from apparent superluminality.

Single BH Pair

Garrett Goon (DAMTP)