Compact structures of extragalactic radio sources in the cosmological context

Leonid Gurvits

Joint Institute for VLBI European Research Infrastructure Consortium, The Netherlands Dept of Astrodynamics and Space Missions, Delft University of Technology, The Netherlands

Angular size – redshift (θ –z) tests: the concept

• The idea:

F. Hoyle, 1959, URSI Symp. No. 1, Paris

- Many attempts at arc-second scale:
- Radio structures as standard rods
 - Kapahi 1987
 - Barthel and Miley 1988,,
 - Nilsson et al 1993
 - + many others
 - Strong source evolution found !
 - Some encouraging results by
 - Buchalter et al. 1998
 - Daly et al. 2001, 2002
 (hand-picking "right" sources)

FIG. 5. Apparent diameter $\Delta \theta$ of a source of absolute diameter D, plotted against red-shift.

Very Long Baseline Interferometry (VLBI): the highest [imaging] angular resolution in astronomy

At present:

• VLBI covers wavelengths from ~0.9 m (~327 MHz) to ~1 mm (~300 GHz);

Angular resolution from 100 to 0.1 milliarcsecond (mas).

Plus: Space VLBI – baselines up to ~30 Earth diameters

What you [want to] get versus what you see:

ARISE, 1999, JPL Publ. 99-14

- What is the correspondence between the two pictures (jets, cores, etc.)?
- How much deeper in the "core" can one go (a hunt for the highest T_B)?

What is seen in AGN at the milliarcsecond scale?

- "Core-jet" structures composed of components with $T_B \sim 10^8 10^{13}$ K
- These components are "shortleaving" (comparing with the cosmological scale): 10³ vs 10¹⁰ yrs
- Central engines of AGN powered by supermassive black holes
- Physics on the sub-pc scale is likely to be dominated by the gravitational potential of the central BH

Physical size (scale) of AGN as a class is more or less the same?

Why mas-scale cosmology?

- The age of "precision cosmology" (M. Longair, IAU GA 2000)
- VLBI the leading edge of (imaging) precision in astronomy
 - Parsec/sub-parsec linear resolution ANYWHERE in the Universe;
 - Objects the most powerful "engines" of the Universe, AGN
 - Their physics supposed to be "governed" by gravitation
 - Well understood?
- Cosmological "utilisation" of existing VLBI data possible
- In combination with other techniques, VLBI provides unique tools for measuring cosmologically meaningful phenomena (e.g. H₀ from the megamaser in NGC4258)
- "Angular size-redshift" (θ -z) milliarcsecond scale test
 - " "in action" since ~1992 (Sahni & Starobinsky 2000, Int. J. Mod. Phys D, 9, 373)

Standard rod at mas scale: phenomenology

$$\theta = \frac{H_0}{c} l \left(\frac{L_c}{L_0}\right)^{\beta} \left(1+z\right)^n D$$

$$D = D(z, \text{cosmology})$$

- β physics of AGN (after all, AGN are different)
- n a blend of (class) evolution and AGN physics
- θ and *z* are measurables =>
 - a fit of " θ -z" enables estimates of D
- NB: Collecting " θ -*z*" data can be done in ad hoc fashion, not a special project/mission

Demonstration mas-scale θ-z tests (1990s)

θ -z 2000: "maximum" use of ad-hoc data

- 330 sources with known redshift and mas images at 5 GHz better than 100:1
- 4-parameter regression model ("proof of suitability")

Naïve results

for the sample of 145 sources (Lb ² $\leq 10^{42}$ W/Hz, $-0.38 \leq \alpha \leq 0.18$).									
#1		$\beta = -0.20$	$\beta = -0.10$	$\beta = -0.05$	β=0.0	$\beta = 0.05$	β =0.10	β=0 <i>2</i> 0	
-0.3	th (pc)	13.98±4.71	16.48 ± 4.82	$17.56{\pm}5.22$	18.48±6.79	19.20±9.09	19.90±1.81	20.84 ± 2.54	
	்றை	1.78 ± 0.83	1.04 ± 0.51	0.81±0.51	0.64 ± 0.73	0.51 ± 1.59	0.41 ± 0.27	0.26±0.06	
-0.2	th (pc)	14.64 ± 4.03	16.76 ± 4.14	17.68 ± 4.50	18.42 ± 6.07	19.00 ± 4.02	19.60 ± 1.93	20.28 ± 2.44	
	Ð	1.22 ± 0.43	0.73 ± 0.30	0.57±0.32	0.45±0.53	0.36 ± 0.71	0.28 ± 0.15	0.17 ± 0.03	
-0.1	th (pc)	15.02 ± 3.48	16.82 ± 3.58	17.58±3.87	18.16 ± 5.42	$18.70 {\pm} 2.06$	19.00 ± 1.98	19.60 ± 2.30	
	ക	0.86±0.23	0.52 ± 0.18	0.40±0.20	0.31 ± 0.40	0.24 ± 0.33	0.19±0.09	0.10 ± 0.02	
0.0	th (pc)	15.15±3.04	16.68 ± 3.12	17.22 ± 3.36	17.72 ± 4.83	$18.10{\pm}1.62$	$18.33 {\pm} 1.95$	18.66 ± 2.14	
	ക	0.60 ± 0.13	0.36 ± 0.11	0.28 ± 0.13	0.21±0.30	0.16 ± 0.18	0.12 ± 0.05	0.05±0.01	
0.1	Ih (pc)	$15.14 {\pm} 2.69$	$16.36 {\pm} 2.74$	16.80 ± 2.92	17.14 ± 4.30	$17.30{\pm}1.56$	$17.56 {\pm} 1.89$	17.68±1.99	
	ക	0.42 ± 0.08	0.25 ± 0.07	0.19±0.09	0.14 ± 0.23	0.10 ± 0.11	0.07±0.03	0.01±0.01	
02	th (pc)	14. 92±2.40	15.88 ± 2.43	$16.20{\pm}2.56$	16.46 ± 3.81	$16.60{\pm}1.55$	16.74±1.79	$16.24{\pm}2.05$	
	்ற	0.29 ± 0.05	0.16±0.05	0.12 ± 0.06	0.08 ± 0.18	0.05 ± 0.07	0.02 ± 0.02	$2e-6 \pm 1e-3$	
03	th (pc)	14.52 ± 2.16	$15.30{\pm}2.16$	15.54 ± 2.26	15.69 ± 3.38	$15.80{\pm}1.53$	$15.40{\pm}1.65$	14.63 ± 1.29	
	்ற	0.20 ± 0.03	0.10 ± 0.03	0.06 ± 0.04	0.03 ± 0.15	$7e-3\pm0.04$	$5e-3\pm0.02$	1e-7±1e-6	

Table 1: Two-parameter (*lh* and q_0) regression model results with 1σ errors for different fixed values of β and n for the sample of 145 sources ($Lh^2 \leq 10^{26}$ W/Hz, $-0.38 \leq \alpha \leq 0.18$).

$q_0 \leq 0.5 \text{ for } \beta + n \geq -0.15$

Aftermath of the "maximum use" sample publication

Vishwakarma 2001 a,b *Astro-ph/9912105, -/0012492,*

$$1 + \Omega_{ko} = \Omega_0 + \Omega_{\Lambda 0}, \quad 2[q_0 + \Omega_{\Lambda 0}] = \Omega_0$$

- Re-analysed data from LIG 1994 (256 sources) and LIG, Kellermann and Frey 1999 (330 sources) in concurrence with the Type Ia SN (Riess 1998, Perlmutter et al. 1999)
- Various models analyzed:

modole	Ω ₀	Ω ₀	$\Omega_{\Lambda 0}$		
mouels	flat	global			
$\Lambda \sim S^{-2}$	0.68	0.97	0.61		
Λ~H ²	0.67	0.29	1.03		
Λ~ρ	0.67	0.53	0.82		
Λ=const	0.2	0.08	1.16		

 θ -z data favor accelerating and decelerating models with Λ =var or accelerating models with Λ =const (SN Ia data: acceleration in both cases)

Aftermath of the "maximum use" sample publication

Minimize

Chen & Ratra 2002 Astro-ph 0207051

$$\chi^{2}(l,P) = \sum_{bins} \left[\frac{\theta(l,P,z_{i}) - \theta_{obs}(z_{i})}{\sigma(z_{i})} \right]^{2}$$
$$L(P) = \int dl \ e^{-\chi^{2}(l,P)/2}$$

 Treat linear size, *lh*, as a "nuisance" parameter

Perlmutter et al. 1998

Constraints on cosmological model from θ -*z* data are consistent but less constraining than those of SN Ia.

Aftermath of the "maximum use" sample publication

Lima & Alcaniz 2002

FRW model driven by non-relativistic matter and a smooth "dark energy" 10 component $p_x = \omega \rho_x$ $\Omega_{\rm m} = 0.3$ $\theta(\mathbf{z})$ Best fit: $\omega = -1.0$ $\omega = -0.6$ $\omega = -0.3$ 1 $\theta \sim z$ $\omega = -0.1$ Standard model $\Omega_m \le 0.62, \quad \omega \le -0.2, \quad lh = 20 \text{ pc}$ $\Omega_m \le 0.17, \quad \omega \le -0.65, \quad lh = 20 \text{ pc}$ 0.1 Redshift $I \sim 20h^{-1} pc (D = 1.4 \times 10^{-3} ")$ $I \sim 22h^{-1} pc (D = 1.5 \times 10^{-3} ")$ -0.2 -0.2 -0.4 -0.4 Conventional flat Λ CDM model (ω = -1) -0.6 -0.6 with Ω_m =0.2 is the best fit. Equation of state (ω) -0.8 -0.8 -1.0 -1.0 0.2 0.8 1.0 0.2 0.4 0.6 0.8 0.4 0.6 0.0 0.0 $I \sim 23h^{-1} pc (D = 1.6 \times 10^{-3} ")$ $I \sim 30h^{-1} pc (D = 2.0 x 10^{-3} ")$ -0.2 -0.2 -0.4 -0.4 Better statistics --0.6 -0.6 - more ata needed! -0.8 -0.8 -1.0 0.0 0.4 0.6 0.8 1.0 0.0 0.8

Shocks in jet as standard rods: θ/τ_{int} versus z

- Linear size of shocks depends on the variability time-scale, T_{int}
- Angular size of the shocks, θ, measured by VLBI (typically 0.1 mas)
- The ratio, θ/τ_{int}, serves as a standard object
- The method requires both VLBI data and monitoring (at high frequencies)

$$q_0 \approx 0, \quad \Omega_m \approx 0$$
$$\Omega = \Omega_m + \Omega_\Lambda = 1$$

Wiik & Valtaoja, 2001

Fig. 2. Normalized datapoints and fitted models with $\Lambda \neq 0$ (Eq. (7)). Ω_m was fixed and best fit was found with $2^{-2/3}KH_0$ as the free parameter

Half a century of quasars

- 3C 273, 1963 (the story by Hazard et al. 2015)
- AGN of all kinds
- Central SMBH
- Known through Z~7

(cf. SN I, *Z*~2)

- Earth-based VLBI offers parsec-scale imaging
 - but deals with a "smoking gun" only....
- VLBI surveys provide images of several 10³ sources
 - including ~30 sources at z>5
 - cover received frequency range 1.6 22 GHz
 - push the radio brightness envelope...
- Key improvements for θz tests with AGN VLBI images
 - Higher z (efforts underway; several z>6 QSOs imaged)
 - Higher sensitivity (efforts underway; single-digit mJy sources imaged)
 - Sharper view (higher brightness temperature) needed!

Cosmic conspiracy: *Earth, a very special place*

But not because of this only

Brightness temperature of a <u>slightly</u> resolved source:

$$T_{\rm b} = \frac{2 \ln 2}{\pi k} \frac{S_{\rm core} \lambda^2 (1+z)}{\theta_{\rm maj} \,\theta_{\rm min}} \sim B^2$$

For a "typical" AGN: $z \sim 1$ $S_{core} \sim 500 \text{ mJy}$ $T_{b} \sim 10^{12} \text{ K}$ (Inverse Compton limit, Kellermann & Pauliny-Toth 1969)

Earth, a very special VLBI system!

RadioAstron – Spektr-R

- 10-m antenna
- 0.327, 1.6, 5 and 22 GHz
- Dual-polarization
- 128 Mbps
- 2 on-board H-masers
- Apogee (initial) 343,000 km
- Data reception Pushchino
 - Green Bank

In orbit since 18 July 2011 (under development since 1978)

Н.С. Кардашев¹, В.В. Хартов², В.В. Абрамов³, В.Ю. Авдеев¹, А.В. Алакоз¹, Ю.А. Александров¹ C. Ahahtakpullhah⁴, B.B. Ahgperhob¹, A.C. Ahgpuahob¹, H.M. Ahtohob¹, M.H. Aptioxob², В. Баан⁵, Н.Г. Бабакин¹, В.Е. Бабышкин², К.Г. Белоусов¹, А.А. Беляев⁶, Б.Ф. Бёрк⁷, А.В. Бирюков¹, А.Е. Бубнов⁸, М.С. Бургин¹, Дж. Буска⁹, А.А. Быкадоров¹⁰, В.С. Бычкова¹, В.И. Васильков¹, К. Веллингтон¹¹, И.С. Виноградов¹, П.А. Войцик¹, А.С. Гвамичава¹, И.А. Гирин¹, Л.И. Гурвиц⁵, Р.Д. Дагкесаманский¹, Л. Д'Аддарио¹³, Г. Джиованини¹⁴, Д. Джонси¹¹, А.А. Дьяков¹⁵, Р. Екерс¹¹, В.Е. Жаров¹⁶, В.И. Журавлёв¹, Г.С. Заславский¹⁷, М.В. Захваткин¹⁷, А.Н. Зиновьев¹, А.В. Ипатов¹⁵, Б.З. Каневский¹, И.А. Кнорин¹, К.И. Келлерманн¹⁸, Ю.А. Ковалев¹, Ю.Ю. Ковалев¹, А.В. Коваленко¹, Б.Л. Коган¹⁹, Р.В. Комаев², А.А. Коноваленко²⁰, Г.Д. Копелянский¹, Ю.А. Корнеев¹, В.И. Костенко¹, Б.Б. Крейсман¹, А.Ю. Кукушкин⁸, В.Ф. Кулишенко²⁰, А.М. Кутькин¹, В.Х. Кэннон²¹, М.Г. Ларионов¹, М.М. Лисаков¹, Л.Н. Литвиненко²⁰, С.Ф. Лихачев¹, Л.Н. Лихачева¹, А.П. Лобанов¹², С.В. Логвиненко¹, Г. Лэнгстон¹⁸, С.Ю. Медведев⁶, М.В. Мелёхин², Д. Мерфи¹³, Т.А. Мизякина¹, Н.Я. Николаев¹, Б.С. Новиков^{1,8}, И.Д. Новиков¹, В.В. Орешко¹, Ю.К. Павленко⁶, И.Н. Пащенко¹, Ю.Н. Пономарёв¹, М.В. Попов¹, А. Правин-Кумар⁴, Р. Престон¹³, В.Н. Пышнов¹, И.А. Рахимов¹⁵, В.М. Рожков²², Дж.Д. Ромни¹⁸, П. Роша⁹, B.A. Pvdakob¹, A. Pэйзенен²³, C.B. Caзaнкоb¹, Б.A. Caxadob⁶, C.K. Cemenob², В.А. Серебренников², Р.Т. Скилици⁵, Д.П. Скулачев⁸, В.И. Слыш¹, А.И. Смирнов¹, Дж. Смит¹³, В.А. Согласнов¹, К.В. Соколовский¹, Л. Сондаар⁵, В.А. Степаньянц¹⁷, М.С. Турыгин³, С.Ю. Турыгин³, А.Г. Тучин¹⁷, С. Урпо²³, С.Д. Федорчук¹, А.М. Финкельштейн¹⁵, Э.Б. Фомалонт¹⁸, И. Фэйеш²⁴, А.Н. Фомина²⁵, Ю.Б. Хапин⁸, Г.С. Царевский¹, Дж.А. Цэнзус¹², А.А. Чуприков¹, М.В. Шацкая¹, Н.Я. Шапировская¹, А.И. Шейхет², А.Е. Ширшаков², А. Шмидт¹², Л.А. Шнырева¹, В.В. Шпилевский¹⁵, В.Е. Якимов¹

Baikonur, 18 July 2011 02:31 UTC

RadioAstron AGN Survey

• 270 brightest AGN from Earth-based surveys

- S_{corr} > 600 mJy at the longest Earth-based baselines (8 GHz)
- Plus several tragets of special interest (IDV and high-z sources)
- Plus 20 highest kinematics AGN from 15 GHz MOJAVE (Lister+ 2003)

Status as of April 2015:

- 1100 segments (experiments) processed;
- 360 detections on <u>90 sources</u>

Detection records:

- 18 cm: 0048–097
- 6 cm: 0716+714
- 1.35 cm: OJ287

27 D_{Earth} 23 D_{Earth} 15.5 D_{Earth} (fringe spacing ~14 µas) How high can be T_B in AGN? Theory: Inverse Compton Cooling: $T_B \le 10^{11.5}$ K Kellermann & Pauliny-Toth 1969

Equilibrium ($E_p = E_m$): $T_B \le 10^{10.5}$ K Readhead 1994

Observations:

TDRSS OVLBI: $T_B \ge 10^{12}$ K Linfield et al. 1989 VSOP, AO0235+164: $T_B \ge 6 \times 10^{13}$ K Frey et al.. 2000 VLBA, 2 cm survey: $T_B \ge 3 \times 10^{12}$ K Kovaley et al.. 2006

AGN Survey detectability statistics so far

Earth diametre

Qualitative conclusion: no surprises, but...

Brightness temperature in RAAGN Survey

- RadioAstron can detect $T_{\rm B} \sim 10^{15} 10^{16} \, {\rm K}$
- So far no such detections

RadioAstron measurements of 3C273

λ [cm]	GRT	B	S_B [mJy]	hetaµasec	<i>Т_В</i> [К]
18	GBT Arecibo	$\begin{array}{c} 165,000 \text{ km} \\ 0.9 \text{ Giga } \lambda \end{array}$	65±10	270±10	10 ¹⁴
6	Arecibo	84,500 km 1.6 Giga λ	130±20	150±10	3x10 ¹³
1.3	GBT/ VLA	99,300 km 7.6 Giga λ	250±40	22±2	2x10 ¹³

Observed T_B is 10² to 10³ times higher than the theory predictions

How can this be?!

- Relativistic Doppler boosting
 - $T_{obs} \equiv \delta T_{int} \sim \gamma T_{int}$
 - γ~ 15
 - $v_p \neq v_b$? NO!
- Complex geometry

- Non Stationary Processes (acceleration/injection)
- Proton synchrotron radiation
 - $T_{b}(p)/T_{b}(e) = (m_{p}/m_{e})^{9/7} \sim 10^{4}$
- Coherent emission
- Stimulated (maser) emission

In lieu of conclusions

- AGN cores are compact enough to require $B \sim 10 D_{Earth}$
- For ~70 AGN observed so far, $T_{\rm B} \sim 10^{12} 10^{14}$ K
 - very high Doppler boosting?
 - (en-mass) exotic explanations?
 - truly new physics?

- Completion of RadioAstron AGN Survey in combination with massive (thousands of sources) Earth-based AGN VLBI surveys will offer a reliable "θ–z" database for ad hoc cosmology tests – at least consistency check.
- Wanted: insight by cosmology community