Measurements of CMB B-mode Polarization from the South Pole

John Kovac for the BICEP/Keck Collaboration – CC, 3 September 2015

Given that beautiful Planck maps exist, why make further suborbital measurements?

- Can achieve higher sensitivity quite quickly now on small patches of the full sky
- Can have higher angular resolution particularly with ground based experiments

Ground based limitation: Can't do high frequencies

Suborbital Limitation: Can't do full sky from a single site (or flight)

• But full sky maps have been made from the ground (e.g. Haslam 408MHz)

High Angular Resolution Experiments

Atacama Cosmology Telescope (ACT) 6 meter diameter

SPT Temperature Results

High ell TT in conjunction with Planck

SPT/ACT SZ Clusters in conjunction with Planck

Planck provides lower redshift cluster sample – will be a major legacy going forward

High Angular Res Pol Experiments (2G)

The SPTpol camera

The ACTpol receiver

High Res Experiments can measure EE damping tail

CMB has higher fractional polarization than point sources – can push further down the damping tail in EE

Published Deep Suborbital Polarization Maps To Date

ACTpol 275 sq deg arxiv:1405.5524

BICEP/Keck 400 sq deg arxiv:1403.3985 and 1502.00643

SPTpol 100 sq deg arxiv: 1411.1042 and 1503.02315

Roughly scaled to indicate relative map sky coverage

POLARBEAR 25 sq deg arxiv:1403.2369

Published Deep Suborbital Polarization Maps To Date

	Q,U Map rms noise N [uK-arcmin]	Survey effective area A [deg ²]	Total Q+U Survey Weight W=2A/N ² [uK ⁻²]	Reference
POLARBEAR	6	24.5	5,000	arxiv:1403.2369
BICEP2	5.2	380	100,000	arxiv:1403.3985
ACTpol	15.8 to 24	276	5,000	arxiv:1405.5524
SPTpol	17@95 & 9@150	100	11,000	arxiv:1503.02315
BICEP2+Keck	3.4	400	250,000	arxiv:1502.00643
Planck 143 GHz (for reference)	70	41,000	60,000	

Caution: gauging relative performance of experiments using nominal detector counts can be misleading – also projections are often optimistic!

Survey weight: A quantity which is linear in number of detectors and integration time – i.e. difficulty of achieving Also linear in power spectrum noise error bar size

Published Deep Suborbital Polarization Maps To Date

NB: Published results only – no projections!

Planck currently better – High res ground based can eventually do much better – see later...

BICEP/Keck/Planck limits on Inflation

BICEP/Keck – targeted on gravity waves

- Single issue "physics experiment"
- Small aperture low resolution optimized for ell<200
- All cold (4K) refracting telescopes
- Single frequency at a time
- Best achieved sensitivity to date...

Co-moving absorptive forebaffle – ultra low sidelobes

The BICEP2/Keck Telescopes

Telescope as compact as possible while still having the angular resolution to observe degree-scale features.

On-axis, refractive optics allow the entire telescope to rotate around boresight for polarization modulation.

Liquid helium (or PT cooler) cools the optical elements to 4.2 K.

A 3-stage helium sorption refrigerator further cools the detectors to 0.27 K.

Mass-produced superconducting detectors from JPL

Transition edge sensor

Microstrip filters

BICEP3 (2015-)

MSC's NSF's South Pole Station:

Chartered cruises for CMB Experimentalists!

- Dry, stable atmosphere and 24h coverage of "Southern Hole"
- "Excursion office" to book heavy equipment support, etc.
- Bingo night, all-you-can-eat buffet

South Pole: "Relentless Observing"

BICEP2 3-year Data Set

John Kovac for The Bicep2 Collaboration

Cosmic Microwave Background

CMB Polarization

The Bicep2 Collaboration

CMB Polarization

The Bicep2 Collaboration

B-mode Map vs. Simulation

Check Systematics: Jackknifes

TABLE 1 Jackknife PTE values from χ^2 and χ (sum-of-deviation)

					_
Jackknife	Bandpowers	Bandpowers	Bandpowers	Bandpowers	-
	$1-5 \chi^2$	$1-9 \chi^2$	$1-5 \chi$	$1-9 \chi$	_
					-
Deck jackk	nife				
EE	0.046	0.030	0.164	0.299	
BB	0.774	0.329	0.240	0.082	
EB	0.337	0.643	0.204	0.267	
Scan Dir ja	ickknife				
EE	0.483	0.762	0.978	0.938	
FR	0.531	0.573	0.896	0.551	
The Collins	11-16-	0.000	0.725	0.050	
rag spin ja	o 541	0.277	0.016	0.028	
BB	0.541	0.377	0.916	0.958	
EB	0.477	0.689	0.856	0.615	
Tile jackkr	ife				
EE	0.004	0.010	0.000	0.002	
BB	0.794	0.752	0.565	0.331	
EB	0.172	0.419	0.962	0.790	
Phase jack	knife				
EE	0.673	0.409	0.126	0.339	
BB	0.591	0.739	0.842	0.944	
EB	0.529	0.577	0.840	0.659	
Mux Col ja	ackknife				
EE	0.812	0.587	0.196	0.204	5 L
BB	0.826	0.972	0.293	0.283	X
EB	0.800	0.968	0.876	0.697	
Alt Deck ja	ackknife				
EE	0.004	0.004	0.070	0.236	
EB	0.397	0.176	0.381	0.086	
Mux Row	ineldenifa				
EE EE	0.052	0.179	0.652	0.720	K X
BB	0.052	0.178	0.033	0.759	
EB	0.529	0.226	0.032	0.048	///
Tile/Deck	iackknife				
EE	0.048	0.088	0.144	0.132	
BB	0.908	0.840	0.629	0.269	
EB	0.050	0.154	0.591	0.591	\sim / /
Focal Plan	e inner/outer jac	kknife			\mathcal{N}
EE	0.230	0.597	0.022	0.090	
BB	0.216	0.531	0.046	0.092	
EB	0.036	0.042	0.850	0.838	$// \times /$
Tile top/bo	ttom jackknife				
EE	0.289	0.347	0.459	0.599	
BB	0.293	0.236	0.154	0.028	
ED	0.545	0.085	0.902	0.932	
Tile inner/o	outer jackknife			0.404	
EE	0.727	0.533	0.128	0.485	
EB	0.465	0.737	0.208	0.168	
Moon jack	knife				
EE	0.499	0.689	0.481	0.679	
BB	0.144	0.287	0.898	0.858	
EB	0.289	0.359	0.531	0.307	
A/B offset	best/worst				
EE	0.317	0.311	0.868	0.709	
BB	0.114	0.064	0.307	0.094	
EB	0.589	0.872	0.599	0.790	

3 years of analysis :

14 jackknife tests applied to 3 spectra, 4 statistics

Splits the 4 boresight rotations

Amplifies differential pointing in comparison to fully added data. Important check of deprojection. See later slides.

Splits by time

Checks for contamination on long ("Temporal Split") and short ("Scan Dir") timescales. Short timescales probe detector transfer functions.

Splits by channel selection

Checks for contamination in channel subgroups, divided by focal plane location, tile location, and readout electronics grouping

Splits by possible external contamination

Checks for contamination from ground-fixed signals, such as polarized sky or magnetic fields, or the moon

Splits to check intrinsic detector properties

Checks for contamination from detectors with best/ worst differential pointing. "Tile/dk" divides the data by the orientation of the detector on the sky.

John Kovac for The Bicep2 Collaboration

Calibration Measurements

We know our Beam Shapes

Because contamination from beam shape mismatch is entirely deterministic, we can both filter the affected modes (deprojection) **and** predict it in simulation using calibration + Planck T data as input.

analysis by Chris Sheehy, Chin Lin Wong

Joint analysis of BICEP2/Keck and Planck data

- In summer 2014 BICEP2/ Keck and Planck collaborations signed MOU to do a joint analysis
- > Data exchanged in late July
- Results of this analysis published last January, arxiv:1502.00612 (and PRL)

BICEP2/Keck/Planck meeting at University of Minnesota 5 Nov 2014

Planck full sky maps at 9 frequencies

Full sky coverage and 9 frequencies - but not as deep as BICEP2/Keck in any given region of the sky

BICEP2/Keck 150 GHz

Planck 353 GHz

Single- and Cross-Frequency Spectra

level comparable to BICEP2/Keck B-mode excess

Jan 2015

BICEP2+Keck (150 GHz) Planck (30-353 GHz)

Multi-component model allows simultaneous constraints for

r, A_{lensing}, A_{dust}, A_{sync}

Can also marginalize over priors for

- frequency spectral indices of FGs
- spatial indices of FG's
- dust/sync correlation
- FG E/B ratio, etc.

Analysis approach developed at Harvard: Colin Bischoff, Victor Buza, Kate Alexander, Immanuel Buder, and Cora Dvorkin

(thanks also to ITC / FAS Odyssey computing!)

Jan 2015

BICEP2+Keck (150 GHz) Planck (30-353 GHz)

BKP Results:

- Dust clearly detected (5.1 σ), ≥ 40% of full signal.
- No significant evidence for r > 0
- From B-modes alone: r < 0.12 (95%), σ(r) ~ 0.035
- r = 0 and r = 0.1 currently at equal likelihood in this analysis.

(STILL NEED BETTER DATA!)

Separating B-mode components

BKP Results

Uncertainties will be reduced with new higher S/N multi-frequency data

Separating B-mode components

BKP Results

Uncertainties will be reduced with new higher S/N multi-frequency data

Also de-lensing!

BKP Result: Dust is \geq 40% of observed excess

Coming soon - Keck 2014 95 GHz

For 2014 season two of the Keck array receivers switched out for 95 GHz

Comparison of signal and noise levels

BICEP2 + Keck12+13 E-mode signal

Keck Array 2014 at 95 GHz

Keck Array 2014 at 95 GHz

Dust BB expected ~5x fainter at 95 GHz vs 150 GHz

2G Balloons which have already flown: EBEX and SPIDER

Additional 2G ground based data under analysis or being taken right now

- SPTpol 2014/15 observing 500 sq deg
- ACTpol 2014/15 observing 2800 sq deg with 2x and 3x receivers
- POLARBEAR
- Keck 95GHz in 2014/15 and 220GHz in 2015 plus BICEP3 coming on line
- CLASS coming online (at 40GHz)

New in 2015 BICEP3 (2.5G?)

95 GHz focal plane

2560 detectors in modular focal plane (45% populated in 2015)

Twice the aperture of BICEP2/Keck

> 10x optical throughput of single BICEP2/Keck receiver

Funded 3G Ground Based Experiments

- SPT-3G receiver under construction and will deploy fall 2016
- ACTpol → Advanced ACTpol (\$7.3M NSF MSIP funding)
- POLARBEAR → Simon's Array (\$5M NSF MSIP funding)

Do really large angular scales from suborbital?

- At least three low res experiments will try:
 - CLASS ground based (Chile)
 - PIPER balloon (multiple flights)
 - LSPE balloon (arctic night flight)

LSPE (140, 220, 240 GHz)

CLASS (40, 90, 150, 220 GHz)

What's left to do?

- Inflationary B-modes
 - At ell=80 bump
 - Need 1000 sq deg
 - Need foreground cleaning and delensing (so small angular scale polarization info needed as well)
 - At ell=10 bump
 - Need >50% sky
 - Need extremely good foreground cleaning
 - Reionization from low ell E-modes will come as a bonus...
- Dark energy science via SZ
 - Need >10,000 sq deg and high res
- Neutrino science via lensing
 - Need >10,000 sq deg and medium res
- Further refine LCDM via damping tail
 - Need >=10,000 sq deg and high res

Generations of suborbital pol experiments

CMB-Stage 4 experiment

Because there is a lot more to learn from the CMB.

CMB-S4: a plan to build a coherent ground-based program working with, and building on, CMB stage II & III projects.

Participation includes, *but is not limited to:*

- the ACT, BICEP/KECK, SPT, Polarbear,... CMB teams and their international partners
- Argonne, FNAL, LBNL, SLAC, NIST U.S. national labs and the high energy physics community.

"Official" CMB-S4 Slide

What it will require

• Survey:

- Inflation, Neutrino, and Dark Energy science requires an optimized survey which includes a range of resolution and sky coverage from deep to wide.

• Sensitivity of ~1 uK-arcmin over half the sky

• Experimental Configuration:

- 200,000+ detectors on multiple platforms
- spanning 40 240 GHz for foreground removal
- ≈ **3 arcmin resolution** required for CMB lensing & neutrino science
- higher resolution leads to amazing and complementary dark energy constraints, and gravity tests on large scales via the SZ effects

See Snowmass planning document arxiv:1309.5383

2001: ACBAR

16 detectors

"Official" CMB-S4 Slide

US HEP P5 Panel recommended **DoE** support CMB-S4

recommended under all funding scenarios

Table 1 Summary of Scenarios

Cosmology v

	Scenarios				Science Drivers				
Project/Activity	Scenario A	Scenario B	Scenario C	Higgs	Neutrinos	Dark Matter	Cosm. Accel.	The Unknown	Technique (Fronti
Large Projects									
Muon program: Mu2e, Muon g-2	Y, Mu2e small reprofile needed	Y	Y					~	T
HL-LHC	Y	Y	Y	~		~		~	E
LBNF + PIP-II	LBNF components Y, delayed relative to Scenario B.	Y	Y, enhanced		~			~	I,C
ILC	R&D only	R&D, butions. See text.	Y	~		~		~	E
NuSTORM	N	Ν	Ν		~				I
RADAR	N	Ν	Ν		~				I
Medium Projects									
LSST	Y	Y	Y		~		~		с
DM G2	Y	Y	Y			~			с
Small Projects Portfolio	Y	Y	Y		~	~	~	~	All
Accelerator R&D and Test Facilities	Y, reduced	some reductions with Y, redirection to PIP-II development	Y, enhanced	~	~	~		~	E,I
CMB-S4	Υ	Υ	Y		~		~		с
DM G3	Y, reduced	Υ	Y			~			С
PINGU	Further develop	ment of concept e	ncouraged		~	~			с
ORKA	N	Ν	Ν					~	ı
МАР	N	Ν	Ν	~	~	~		~	E,I
CHIPS	N	Ν	Ν		~				I
LAr1	N	Ν	Ν		~				I
Additional Small Projects (beyond the Small Projects Portfolio above)									
DESI	N	Y	Y		~		~		с
Short Baseline Neutrino Portfolio	Y	Y	Y		~				Ι

FY14	FY15	FY16	FY17	FY18	FY19	FY20	FY21 - FY24+		
Establish coll management									
Detector & Readout R&D at Universities and DOE Labs									
DOE LAB Det	DOE LAB Detector Fabrication & Readout								
Optimize throughput of existing CMB telescopes New focal planes and cameras									
Design(s) of new telescopes									
Build, deploy, commission new telescopes									
NERSC Com (NERSC 8 deployed)	puting		SC 9 deploved)		•				
transition fro	transition from Stage III to coherent Stage IV CMB program								
Full CMB-S4	Operations								

Conclusions

- Suborbital experiments are pushing the CMB frontier
 in many cases enabled by and in conjunction with Planck
- The small aperture BICEP/Keck experiments currently have by far the highest published sensitivity
 - Don't over focus on nominal detector count...
 - But 3G experiments are coming...
 - Value of joint analyses is obvious!
- BICEP/Keck also achieve systematic control at low ell
 - It remains to be seen: can large apertures deliver at lower ell?
- Big plans for the future:

- CMB-S4 seeks to put 100,000's of detectors on the sky!

Thank you !

