On the phenomenology of extended Brans-Dicke gravity

NELSON A. LIMA INSTITUTE FOR ASTRONOMY UNIVERSITY OF EDINBURGH

COSMOCRUISE 2015

COLLABORATOR: PEDRO G. FERREIRA (U. OXFORD) SUPERVISOR: PROF. ANDREW LIDDLE

OUTLINE

- Why should we consider modifying gravity?
- Extended Brans-Dicke gravity with a constant potential
- Extended Designer Brans-Dicke gravity
- The phenomenological parameters
- Conclusions and outlook

Why Modify Gravity?

Img. Source: planck.cf.ac.uk

- Our Universe is undergoing an accelerated expansion
- Approx. 70 % is an exotic negative pressure component, Dark Energy
- Our best guess is ΛCDM. However, it is not definitive
- Does G.R. need to be corrected/modified?

- MG theories evade Solar-system tests through screening mechanisms
- At the background level, modified gravity can be indistinguishable from ΛCDM with fine-tuning
- Next generation of surveys may place tight constraints on the largest scales
- Dynamics of linear perturbations of MG theories can be significantly different
- Essential to understand how the observables are interrelated to the fundamental parameters of the theories

 Evolution of the perturbed potentials can be parameterized in the sub-horizon (k²/a²H²>>1) regime [De Felice, 2011]

$$\frac{k^2}{a^2}\Psi \approx -4\pi G_{eff}(k,a)\rho_m\delta \qquad \eta(k,a) \equiv -\frac{\Phi}{\Psi}$$

G_{eff} and η are scale and time dependent functions that are also related to the fundamental parameters of the theory one considers

Extended Brans-Dicke gravity

• We consider an action of the form

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[\phi R - \frac{w_{BD}}{\phi} \left(\partial \phi \right)^2 - 2V(\phi) \right] + S_m$$

Scalar field equation of motion

$$\nabla^{\alpha} \nabla_{\alpha} \phi = \frac{\kappa^2 T}{2w_{BD} + 3} + \frac{4V(\phi) - 2\phi V_{\phi}}{2w_{BD} + 3}$$

• Effective eq. of state: $w_{eff} = \frac{\dot{\phi}^2 w(\phi) + 4H\dot{\phi} + 2\ddot{\phi} - 2V(\phi)}{\dot{\phi}^2 w(\phi) - 6H\dot{\phi} + 2V(\phi)}$

Extended Brans-Dicke gravity

- The GR limit is recovered when $w_{BD} \rightarrow \infty$
- Solar-system tests place lower bound on the Brans-Dicke parameter of 40.000 [B. Bertotti, 2003]
- Cosmological constraints place the lower bound at around 1.000 [A. Avilez, 2014]
- Accelerating solutions without $V(\phi)$ exist for negative (order unity) Brans-Dicke parameter, or considering w_{bd} as a function of the scalar field

Extended Brans-Dicke gravity with a constant potential

- Constant potential $V(\phi) = 3H_0^2(1 \Omega_m)$
- Matter dominated regime: [H. Nariai, 1968]

$$\phi = \phi_0 a^{1/(1+w_{BD})}$$

• Inserting in the eq. of state

$$w_{eff} \approx \frac{4 - 4w_{BD}V(\phi)a^3 / H_0^2}{-10 + 4w_{BD}V(\phi)a^3 / H_0^2}$$

• Fractional energy density

$$\Omega_{\phi} \approx \frac{1}{3} \left[-\frac{5}{2w_{BD}} + a^3 \frac{V(\phi)}{H_0^2} \right]$$

 $=\frac{2w_{BD}+4}{2w_{BD}+3}$

Extended Brans-Dicke gravity with a constant potential

• Departure from attractor solution at late-times

- Numerical solution matches attractor solution at early-times -> presence of potential negligible
- Sharp transition in effective eq. of state due to effective dark energy density crossing zero
- Departure at late-times, with the scalar field moving away from attractor solution and yielding a value today larger than ϕ_0

Extended designer Brans-Dicke gravity

Designer Brans-Dicke approach

$$H^{2} = \frac{E(a)}{\phi} = \frac{H_{0}^{2}}{\phi} \left[\Omega_{m} a^{-3} + (1 - \Omega_{m}) a^{-3(1 + w_{eff})} \right]$$

Potential given by

$$V(\phi) = 3H_0^2 (1 - \Omega_m) a^{-3(1 + w_{eff})}$$

• Assuming main contribution to effective dark energy density comes from potential, hence, sub-dominant scalar field dynamics

Extended designer Brans-Dicke gravity

• Earlier departures from attractor solution

- Designer approach recovers attractor solution -> expected since potential is suppressed at early-times
- Significant departures from attractor solution at late-times
- Departures happen earlier the more significant we set the dark energy component to be

Analytical solutions

• Late-time analytical solutions for ϕ

• $w_{eff} = -1$ $\phi(a) = \phi(a_i)g^{-1}(a_i)a^{\frac{2}{d}} (2a^3(1-\Omega_m) + \Omega_m)^{\frac{2}{3d}}$

- Analytical solution tends to overestimate departure from attractor solution
- Nevertheless, sub-percent order errors throughout

- Our solution now underestimates the departure from the attractor solution
- Sub-percent order errors for large w_{BD}

Analytical solutions

• Global solution, $w_{eff} \ge -1$

$$\phi_{global} = \phi(a_i) f(a) g(a) f^{-1}(a_i) g^{-1}(a_i)$$

- Simply the product of the particular solutions
- Will be an exact solution of the eq. of motion when $w_{eff} = -1$, and an approximate solution when $w_{eff} > -1$
- We will see it works great to describe the phenomenological parameters

 Sub-horizon (k²/a²H²>>1) parameters in quasistatic regime [De Felice, 2011]

$$\frac{G_{eff}}{G} = \frac{1}{\phi} \frac{4 + 2w_{BD} + 2\phi (Ma/k)^2}{3 + 2w_{BD} + 2\phi (Ma/k)^2}$$
$$-\frac{\Phi}{\Psi} = \eta = \frac{1 + w_{BD} + \phi (Ma/k)^2}{2 + w_{BD} + \phi (Ma/k)^2}$$
$$k_M = \sqrt{\frac{\phi}{1 + w_{BD}}} Ma$$

• For large w_{BD} and w_{eff} > -1 we find

$$k_{M} \approx \frac{3H_{0}}{\sqrt{2}} \sqrt{a^{-1}\Omega_{m}(2 + w_{eff}) + 2(1 - \Omega_{m})(1 + w_{eff})a^{-(1 + 3w_{eff})}}$$

- k_M is a fairly negligible quantity
- Furthermore, k_M will be very similar to the comoving horizon, aH
- Hence, assuming k/k_M>>1 is a great approximation at sub-horizon scales!

Sub-horizon (k²>>a²H²) parameters in quasi-static regime

$$\frac{G_{eff}}{G} = \frac{1}{\phi} \frac{4 + 2w_{BD} + 2\phi (Ma/k)^2}{3 + 2w_{BD} + 2\phi (Ma/k)^2} \approx \frac{1}{\phi} \frac{4 + 2w_{BD}}{3 + 2w_{BD}} \equiv \xi_{QS}$$

$$-\frac{\Phi}{\Psi} \equiv \eta = \frac{1 + w_{BD} + \phi \left(Ma / k\right)^2}{2 + w_{BD} + \phi \left(Ma / k\right)^2} \approx \frac{1 + w_{BD}}{2 + w_{BD}} \equiv \eta_{QS}$$

Constant throughout cosmological evolution

• Taylor expansion of ξ_{QS} at a = 1

$$\xi_{QS1} \approx 1 + (1 - a) \left[\frac{8 - 6\Omega_m}{d(2 - \Omega_m)} + \frac{3\sqrt{6d(1 - \Omega_m)}(1 + w_{eff})^{3/2}}{3d(1 + w_{eff}) - 2} \right]$$

$$\xi_{QS2} \approx \left(\frac{\Omega_m}{2 - \Omega_m}\right)^{\frac{2}{3d}} \left(\frac{1 - \sqrt{1 - \Omega_m}}{1 + \sqrt{1 - \Omega_m}}\right)^{-\frac{\sqrt{6d}\left(1 + w_{eff}\right)^{3/2}}{w_{eff}\left(-2 + 3d\left(1 + w_{eff}\right)\right)}} \xi_{QS1}$$

• Analytical approximation works very well!

- Two possible regimes. Either $G_{eff}/G =$ 1 or smaller than 1 today, depending on $\phi = \phi_0$ or $\phi > \phi_0$ today
- Approximation works better for larger w_{BD}
- Considerable deviation from 1 for larger $w_{e\!f\!f}$

• G_{eff}/G evaluated today for $w_{eff} = -1$

Conclusions

- Novel designer extended Brans-Dicke model
- Analytical solutions for the Brans-Dicke scalar field provide good agreement with numerical predictions
- Explicit understanding of behavior of phenomenological QS parameters on the model parameters
- Clear departure from standard GR that can be constrained