On the phenomenology of extended
Brans-Dicke gravity

O




Why should we consider modifying gravity?

Extended Brans-Dicke gravity with a constant
potential

Extended Designer Brans-Dicke gravity
The phenomenological parameters

Conclusions and outlook



Why Modify Gravity?
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e QOur Universe is undergoing
an accelerated expansion
Dark Matt 26.8% : .
S ° « Approx. 70 % is an exotic

negative pressure
component, Dark Energy

BRI 68.3% e Qur best guess 1s ACDM.
However, it is not definitive

* Does G.R. need to be
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MG theories evade Solar-system tests through screening
mechanisms

At the background level, modified gravity can be
indistinguishable from ACDM with fine-tuning

Next generation of surveys may place tight constraints on the
largest scales

Dynamics of linear perturbations of MG theories can be
significantly different

Essential to understand how the observables are interrelated
to the fundamental parameters of the theories



Evolution of the perturbed potentials can be
parameterized in the sub-horizon (k?/a2H?>>1)
regime [De Felice, 2011]
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G.rand 1 are scale and time dependent functions
that are also related to the fundamental parameters
of the theory one considers



We consider an action of the form

1 4 | )44 2 -
S = d x-g|oR-—L2(dp) -2V +S
Scalar field equation of motion
KT, 4V (p)-2¢V,
2w, +3 2w, +3

O*w(p)+4H+2¢-2V(9)

VeV ¢ =
2w, +3=d

Effective eq. of state: W, =

¢*w(p)-6Hp+2V ()



The GR limit is recovered when wpg,-> o

Solar-system tests place lower bound on the Brans-Dicke
parameter of 40.000 [B. Bertotti, 2003]

Cosmological constraints place the lower bound at
around 1.000 [A. Avilez, 2014]

Accelerating solutions without V(¢) exist for negative
(order unity) Brans-Dicke parameter, or considering w,
as a function of the scalar field



Constant potential V(¢)=3H;(1-2,,) b dw,, +4

’ 2wep +3
Matter dominated regime: ¢ =@ a""*""*’

[H. Nariai, 1968]
Inserting in the eq. of state
~ 4 — 4WBDV(¢)a3 |H;
YT 10+ 4w V(g)a'/H,
BD 0
1| 5 LV (9)
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Fractional energy density €, = 3




Extended Brans-Dicke gravity with a constant
potential
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Departure from attractor solution at late-times

 Numerical solution matches attractor
solution at early-times -> presence of
potential negligible
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Designer Brans-Dicke approach

E : 31w
H’ = (@) _Hi [Qma-3+(1-9m)a A eﬁ‘)]
¢ ¢
Potential given by

V(g)=3H2(1-Q,)a ")

Assuming main contribution to effective dark energy
density comes from potential, hence, sub-dominant
scalar field dynamics



Extended designer Brans-Dicke gravity
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Earlier departures from attractor solution

Lo » Designer approach recovers
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Extended designer Brans-Dicke gravity




Late-time analytical solutions for ¢

_ g(a)
Wefr = -1 ) o )

d(a)=p(a)g " (a)a (24’ (1-Q,)+Q, )

1.01
1.00}
0.99
0.98f

ool i  Analytical solution tends to
95) —  wpp=100,0, =0.35 || .
il oy —500.2, 030 overestimate departure from

0933 107 100 10° attractor solution

0.30

— =100,Q, =0.35
- 0.25} Wpp m 9
S —  wpp=500,,,=0.30

—

3% j » Nevertheless, sub-percent order

>T> 0.15F
< 010 | errors throughout

<
— 0.05f

0.00 ‘
1073 107 10? 10°



Analytical solutions
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Analytical solutions
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Global solution, w42 -1
Boona = (@) f(@)g(a)f (a)g ()

Simply the product of the particular solutions

Will be an exact solution of the eq. of motion when
w, ;= -1, and an approximate solution when w, > -1

We will see it works great to describe the
phenomenological parameters



Sub-horizon (k?/a?H?>>1) parameters in quasi-
static regime [De Felice, 2011]

G,y 14+2w,,+2¢(Ma [k)
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For large wgp, and w,4> -1 we find
3H,

by =73
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Sub-horizon (k?>>a?H?) parameters in quasi-static
regime

G, 1 442wy, +2¢(Ma k) 1442w,

= ~ =&
G  93+2w,,+ 2¢(Ma/k)2 $3+2w,, O
o 1+WBD+¢(MCl/k)2 1+w,,
——ET]: > ~ ET]QS
W 2+wBD+¢(Ma/k) 2+ Wgp

Constant throughout cosmological
evolution



Taylor expansion of &, ata =1
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Analytical approximation works very well!
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Two possible regimes. Either G,;/G =
1 or smaller than 1 today, depending

on ¢ = ¢0 or ¢ > ¢0 today

Approximation works better for
larger wy,

Considerable deviation from 1 for
larger w,



Phenomenological Parameters
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Phenomenological Parameters
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Novel designer extended Brans-Dicke model

Analytical solutions for the Brans-Dicke scalar field
provide good agreement with numerical predictions

Explicit understanding of behavior of
phenomenological QS parameters on the model
parameters

Clear departure from standard GR that can be
constrained



