Weighted randoms for multi-epoch surveys: Application to CFHTLenS magnification and RCSLenS

Christopher Morrison w/ Hendrik Hildebrandt Argelander-Institut für Astronomie, University of Bonn Cosmo Cruise 4/9/2015

Outline

- Weak Lensing Magnification
- Inhomogeneities in Photometric Surveys
 - CFHTLenS Survey Systematic Variations
 - Density Variations
 - Correlations
- Modeling and Creation of Weighted Randoms
 - Mapping Survey Systematics to Galaxy Density
- Results
 - Correlations after modeling
- RCSLenS
- Conclusions

Weak Lensing Magnification

Credit: SDSS Collaboration

Measuring Magnification

Magnification scaling with Magnitude

CFHTLenS

- 154 sq. deg. (*ugriz*) survey using the CFHT Legacy Survey data
- 171 pointings over 4 widely separated fields
- i<24.5 5σ detection
- Resolved sources: 17 gal. per sq. arcmin
- Mean redshift of z~0.7
- Extensive calibration and systematics tests
 - Heymans et al. 2012, Erben et al. 2012, Hildebrandt et al. 2012, Miller et al. 2012

A Typical CFHTLenS Pointing

CFHTLenS Pointing Δi_{\lim} [MagAB]

_ ų

CFHTLenS Pointing

 $\Delta FWHM_i$ [rel.dev.]

-0.015

CFHTLenS Pointing

 $\Delta E(B-V) \times 10 [MagAB]$

10

Density vs Systematics [E(B-V)]

Another Example

Leistedt et al. 2015

Systematics Correlations [Depth]

Systematics Correlations [Depth] (faint LBGs)

Systematics Correlations [PSF size]

Systematics Correlations [PSF] (faint LBGs)

Systematics Correlations [E(B-V)]

Systematics Correlations [E(B-V)] (faint LBGs)

Empirically Modeling Density Systematics

- Parts of the survey with similar observing conditions should have similar sensitivities
- Create a map between survey systematic values and observed galaxy density. High dimensional problem
 - Employ machine learning to do this, we chose KMeans for simplicity
 - Average over survey to avoid destroying cosmic signal
- Use resulting weight map to draw randoms for L&S93 Estimator
 - [DD DR RD RR]/RR

Method

Depth (5 bands)

PSF size (5 bands) Galactic Extinction

Estimate galaxy sample density in KMeans regions

KMeans Cluster Finder: Identify regions in survey with similar systematics values

Systematic value 1

Resultant Weight Map

Resultant Weight Map

Correction: PSF size

Correction: Extinction

RCS Lens

- Based on RCS2 data (*griz*) and CFHTLenS pipeline
- 785deg² imaging to $r \sim 24$ (7 σ extended)
- Lensing catalogue: 5 gal. per sq. arcmin.
- Mean redshift of z~0.6.
- Overlap with SDSS, WiggleZ, DEEP2
- Combined with CFHTLenS ~1000deg²

Slide: Hendrik Hildebrandt

$$E_G(R) = \frac{1}{\beta} \frac{\Upsilon_{gm}(R, R_0)}{\Upsilon_{gg}(R, R_0)}$$

RCSLenS

RCSLenS

RCSLenS

KiDS:

- 1500 sq. deg. survey
- VLT Survey Telescope (VST)
- four bands: ugri
- superb image quality
- same footprint as VIKING
- overlap with 2dF, GAMA, SDSS

Conclusions

- Galaxy density variations caused by survey systematics can be a large effect
 - Especially for small signals such as weak lensing magnification
- Modeling these processes through the detection pipeline is nontrivial
 - Requires large simulated dataset
- Empirically modeling the relation of density to survey systematic is an option
 - Test other, more complex learning: SOM, Kernel Smoothing
 - Can even provide tests for how well the simulations are preforming.
- Paper Submitted and coming soon
- As data volume increases, correcting for these effect becomes even more important
 - KiDS, DES, HSCLS, LSST

CFHTLenS Magnitude Shift

Self Organizing Maps

37

Self Organizing Maps

Cross-Correlation with Weighted Randoms

