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CMB History
CMB “predicted”/“detected” in 1940s
Discovered by Penzias & Wilson 1965
Spectrum measured 1970s

  (Precisely blackbody by 1990)
Dipole measured 1970s
Anisotropies predicted 1970s & 1980s

  (often focused on the quadrupole)
Anisotropies detected early 1990s
Lots of experiments followed
Joined now by Planck



The CMB Sky
Temperature anisotropies at   400,000 years~ 



Statistical description of anisotropies

Cℓ ≡
〈

|aℓm|2
〉

(2ℓ + 1)Cℓ/4π

i.e. average over ms

is power at each l

T (θ, φ) =
∑

ℓm

aℓmYℓm(θ, φ)

Expand sky in spherical harmonics

Monopole is T₀ (=a₀₀)

l≥2 modes give info on perturbations

Dipole is our “absolute motion”



The CMB Power Spectrum
l = oscillations per ∼180 degrees

Te
m

p.
 v

ar
ia

nc
e

(p
ow

er
 p

er
 ln

 l 
)



The CMB Power Spectrum

Large-scale modes
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The CMB Power Spectrum

Large-scale modes
Intermediate-scale 
modes

l = oscillations per ∼180 degrees
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The CMB Power Spectrum

Large-scale modes
Intermediate-scale 
modes Small-scale modes
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The CMB Power Spectrum Full-sky (simulated) 
map of the CMB

Large-scale modes
Intermediate-scale 
modes Small-scale modes
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“Precision era” of cosmology
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But let’s ignore all that 
beauty and precision!

And talk about the 
very lowest multipoles!



Lowest-order
spherical 
harmonics



Lowest-order
spherical 
harmonics

Let’s start with
the monopole
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CMB Spectrum

Best blackbody in the Universe

(better than you can buy at Bob’s
Better Blackbody Boutique)



2 20. Cosmic background radiation

The collisions of electrons with nuclei in the plasma produce
free-free (thermal bremsstrahlung) radiation: eZ → eZγ. Free-
free emission thermalizes the spectrum to the plasma temperature
at long wavelengths. Including this effect, the chemical potential
becomes frequency-dependent,

µ(x) = µ0e−2xb/x , (20.5)

where xb is the transition frequency at which Compton scattering
of photons to higher frequencies is balanced by free-free creation of
new photons. The resulting spectrum has a sharp drop in bright-
ness temperature at centimeter wavelengths [6]. The minimum
wavelength is determined by ΩB .
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Figure 20.3: The shapes of expected, but so far unob-
served, CMB distortions, resulting from energy-releasing pro-
cesses at different epochs.

The equilibrium Bose-Einstein distribution results from the old-
est non-equilibrium processes (105 < z < 107), such as the decay of
relic particles or primordial inhomogeneities. Note that free-free
emission (thermal bremsstrahlung) and radiative-Compton scat-
tering effectively erase any distortions [7] to a Planckian spectrum
for epochs earlier than z ∼ 107.

20.2.3. Free-free distortion: Very late energy release (z ≪ 103).
Free-free emission can create rather than erase spectral distortion
in the late universe, for recent reionization (z < 103) and from
a warm intergalactic medium. The distortion arises because of
the lack of Comptonization at recent epochs. The effect on the
present-day CMB spectrum is described by

∆Tff = Tγ Yff /x2, (20.6)

where Tγ is the undistorted photon temperature, x is the dimen-
sionless frequency, and Yff /x2 is the optical depth to free-free
emission:

Yff =

∫ z

0

Te(z′)−Tγ(z′)

Te(z′)

8πe6h2n2
e g

3me(kTγ)3
√

6πme kTe

dt

dz′
dz′ .

(20.7)
Here h is Planck’s constant, ne is the electron density and g is the
Gaunt factor [8].

20.2.4. Spectrum summary: The CMB spectrum is consistent
with a blackbody spectrum over more than three decades of fre-
quency around the peak. A least-squares fit to all CMB measure-
ments yields:

Tγ = 2.728± 0.002 K

nγ = (2ζ(3)/π2)T3
γ ≃ 413cm−3

ργ = (π2/15)T4
γ ≃ 4.68× 10−34 gcm−3 ≃ 0.262eVcm−3

|y| < 1.2× 10−5 (95% CL)

|µ0| < 9× 10−5 (95% CL)

|Yff | < 1.9× 10−5 (95% CL)

The limits here [9] correspond to limits [11–13] on energetic pro-
cesses ∆E/ECBR < 2×10−4 occurring between redshifts 103 and
5× 106 (see Fig. 20.4). The best-fit temperature from the COBE
FIRAS experiment is Tγ = 2.728± 0.002K [11].

Figure 20.4: Upper Limits (95% CL) on fractional energy
(∆E/ECBR) releases as set by lack of CMB spectral dis-
tortions resulting from processes at different epochs. These
can be translated into constraints on the mass, lifetime and
photon branching ratio of unstable relic particles, with some
additional dependence on cosmological parameters such as
ΩB [9,10].

20.3. Deviations from isotropy

Penzias and Wilson reported that the CMB was isotropic and
unpolarized to the 10% level. Current observations show that the
CMB is unpolarized at the 10−5 level but has a dipole anisotropy
at the 10−3 level, with smaller-scale anisotropies at the 10−5 level.
Standard theories predict anisotropies in linear polarization well
below currently achievable levels, but temperature anisotropies of
roughly the amplitude now being detected.

It is customary to express the CMB temperature anisotropies
on the sky in a spherical harmonic expansion,

∆T

T
(θ,φ) =

∑

ℓm

aℓmYℓm(θ,φ) , (20.8)

and to discuss the various multipole amplitudes. The power at a
given angular scale is roughly ℓ

∑

m |aℓm|2 /4π, with ℓ ∼ 1/θ.

20.3.1. The dipole: The largest anisotropy is in the ℓ = 1
(dipole) first spherical harmonic, with amplitude at the level of
∆T/T = 1.23× 10−3. The dipole is interpreted as the result of
the Doppler shift caused by the solar system motion relative to
the nearly isotropic blackbody field. The motion of the observer
(receiver) with velocity β = v/c relative to an isotropic Planck-
ian radiation field of temperature T0 produces a Doppler-shifted
temperature

T (θ) = T0(1− β2)1/2/(1− β cosθ)

= T0

(

1+ β cosθ+ (β2/2)cos2θ +O(β3)
)

. (20.9)
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Figure 20.3: The shapes of expected, but so far unob-
served, CMB distortions, resulting from energy-releasing pro-
cesses at different epochs.

The equilibrium Bose-Einstein distribution results from the old-
est non-equilibrium processes (105 < z < 107), such as the decay of
relic particles or primordial inhomogeneities. Note that free-free
emission (thermal bremsstrahlung) and radiative-Compton scat-
tering effectively erase any distortions [7] to a Planckian spectrum
for epochs earlier than z ∼ 107.
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in the late universe, for recent reionization (z < 103) and from
a warm intergalactic medium. The distortion arises because of
the lack of Comptonization at recent epochs. The effect on the
present-day CMB spectrum is described by
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Here h is Planck’s constant, ne is the electron density and g is the
Gaunt factor [8].

20.2.4. Spectrum summary: The CMB spectrum is consistent
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quency around the peak. A least-squares fit to all CMB measure-
ments yields:
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nγ = (2ζ(3)/π2)T3
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ργ = (π2/15)T4
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The limits here [9] correspond to limits [11–13] on energetic pro-
cesses ∆E/ECBR < 2×10−4 occurring between redshifts 103 and
5× 106 (see Fig. 20.4). The best-fit temperature from the COBE
FIRAS experiment is Tγ = 2.728± 0.002K [11].

Figure 20.4: Upper Limits (95% CL) on fractional energy
(∆E/ECBR) releases as set by lack of CMB spectral dis-
tortions resulting from processes at different epochs. These
can be translated into constraints on the mass, lifetime and
photon branching ratio of unstable relic particles, with some
additional dependence on cosmological parameters such as
ΩB [9,10].

20.3. Deviations from isotropy

Penzias and Wilson reported that the CMB was isotropic and
unpolarized to the 10% level. Current observations show that the
CMB is unpolarized at the 10−5 level but has a dipole anisotropy
at the 10−3 level, with smaller-scale anisotropies at the 10−5 level.
Standard theories predict anisotropies in linear polarization well
below currently achievable levels, but temperature anisotropies of
roughly the amplitude now being detected.

It is customary to express the CMB temperature anisotropies
on the sky in a spherical harmonic expansion,

∆T

T
(θ,φ) =

∑

ℓm

aℓmYℓm(θ,φ) , (20.8)

and to discuss the various multipole amplitudes. The power at a
given angular scale is roughly ℓ

∑

m |aℓm|2 /4π, with ℓ ∼ 1/θ.

20.3.1. The dipole: The largest anisotropy is in the ℓ = 1
(dipole) first spherical harmonic, with amplitude at the level of
∆T/T = 1.23× 10−3. The dipole is interpreted as the result of
the Doppler shift caused by the solar system motion relative to
the nearly isotropic blackbody field. The motion of the observer
(receiver) with velocity β = v/c relative to an isotropic Planck-
ian radiation field of temperature T0 produces a Doppler-shifted
temperature

T (θ) = T0(1− β2)1/2/(1− β cosθ)

= T0

(

1+ β cosθ+ (β2/2)cos2θ +O(β3)
)

. (20.9)

T0 = 2.7255±0.0006 K

But expected distortions smaller still
Tight constraints on distortions

ε0 = 0.2605 eV cm-3 νpeak = 160.24 GHz
n0 = 410.1 cm-3
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served, CMB distortions, resulting from energy-releasing pro-
cesses at different epochs.

The equilibrium Bose-Einstein distribution results from the old-
est non-equilibrium processes (105 < z < 107), such as the decay of
relic particles or primordial inhomogeneities. Note that free-free
emission (thermal bremsstrahlung) and radiative-Compton scat-
tering effectively erase any distortions [7] to a Planckian spectrum
for epochs earlier than z ∼ 107.

20.2.3. Free-free distortion: Very late energy release (z ≪ 103).
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in the late universe, for recent reionization (z < 103) and from
a warm intergalactic medium. The distortion arises because of
the lack of Comptonization at recent epochs. The effect on the
present-day CMB spectrum is described by

∆Tff = Tγ Yff /x2, (20.6)
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Here h is Planck’s constant, ne is the electron density and g is the
Gaunt factor [8].

20.2.4. Spectrum summary: The CMB spectrum is consistent
with a blackbody spectrum over more than three decades of fre-
quency around the peak. A least-squares fit to all CMB measure-
ments yields:

Tγ = 2.728± 0.002 K

nγ = (2ζ(3)/π2)T3
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5× 106 (see Fig. 20.4). The best-fit temperature from the COBE
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(∆E/ECBR) releases as set by lack of CMB spectral dis-
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can be translated into constraints on the mass, lifetime and
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additional dependence on cosmological parameters such as
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20.3. Deviations from isotropy

Penzias and Wilson reported that the CMB was isotropic and
unpolarized to the 10% level. Current observations show that the
CMB is unpolarized at the 10−5 level but has a dipole anisotropy
at the 10−3 level, with smaller-scale anisotropies at the 10−5 level.
Standard theories predict anisotropies in linear polarization well
below currently achievable levels, but temperature anisotropies of
roughly the amplitude now being detected.

It is customary to express the CMB temperature anisotropies
on the sky in a spherical harmonic expansion,

∆T

T
(θ,φ) =

∑

ℓm

aℓmYℓm(θ,φ) , (20.8)

and to discuss the various multipole amplitudes. The power at a
given angular scale is roughly ℓ

∑

m |aℓm|2 /4π, with ℓ ∼ 1/θ.

20.3.1. The dipole: The largest anisotropy is in the ℓ = 1
(dipole) first spherical harmonic, with amplitude at the level of
∆T/T = 1.23× 10−3. The dipole is interpreted as the result of
the Doppler shift caused by the solar system motion relative to
the nearly isotropic blackbody field. The motion of the observer
(receiver) with velocity β = v/c relative to an isotropic Planck-
ian radiation field of temperature T0 produces a Doppler-shifted
temperature

T (θ) = T0(1− β2)1/2/(1− β cosθ)

= T0

(

1+ β cosθ+ (β2/2)cos2θ +O(β3)
)

. (20.9)

T0 = 2.7255±0.0006 K

But expected distortions smaller still
Tight constraints on distortions

ε0 = 0.2605 eV cm-3 νpeak = 160.24 GHz
n0 = 410.1 cm-3
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served, CMB distortions, resulting from energy-releasing pro-
cesses at different epochs.

The equilibrium Bose-Einstein distribution results from the old-
est non-equilibrium processes (105 < z < 107), such as the decay of
relic particles or primordial inhomogeneities. Note that free-free
emission (thermal bremsstrahlung) and radiative-Compton scat-
tering effectively erase any distortions [7] to a Planckian spectrum
for epochs earlier than z ∼ 107.

20.2.3. Free-free distortion: Very late energy release (z ≪ 103).
Free-free emission can create rather than erase spectral distortion
in the late universe, for recent reionization (z < 103) and from
a warm intergalactic medium. The distortion arises because of
the lack of Comptonization at recent epochs. The effect on the
present-day CMB spectrum is described by
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20.3.1. The dipole: The largest anisotropy is in the ℓ = 1
(dipole) first spherical harmonic, with amplitude at the level of
∆T/T = 1.23× 10−3. The dipole is interpreted as the result of
the Doppler shift caused by the solar system motion relative to
the nearly isotropic blackbody field. The motion of the observer
(receiver) with velocity β = v/c relative to an isotropic Planck-
ian radiation field of temperature T0 produces a Doppler-shifted
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FIG 2.20.—Schematic diagram of the history of the Universe from the Planck time to the present.

such as the fine structure constant α, vary with time? Are there deviations from the usual
Friedmann equations as predicted in some brane-world scenarios?

• What is the physics behind inflation? Are the initial perturbations purely adiabatic, or are
there isocurvature perturbations as well? Are cosmic defects produced at the end of inflation?
Can inflation be realised in string theory? Is inflation eternal?

• Are there signatures of physics at the Planck scale or beyond imprinted on the fluctuation
spectra?

• How did the Universe begin? Can string theory resolve the problem of the initial Big Bang
singularity? Can we probe through the Big Bang to a previous phase of the Universe’s history?

• What physics selects the vacuum solution for our Universe? String theory appears to have an
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FIG 2.20.—Schematic diagram of the history of the Universe from the Planck time to the present.
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Andrew McKellar

CN measurements
at DAO (1940, 1941)
⇒ rotational
temp ≈ 2.3K

Herzberg (1950):
“...only a very

restricted meaning”

DAO 77”



with Ryley Hill and Kiyo Masui

The (extragalactic) monopole across the entire EM spectrum



Current measurement: T0=2.7255±0.0006K
 (Fixsen 2009)

But ΔT/T~0.00001 on all scales
 including our Hubble patch!

So if we could live in a ~3σ fluctuation
 then we’re only ~10 from Cosmic Variance!

But isn’t the monopole coordinate dependent?

The CMB monopole



But we live in a potential (which is in 
another potential ...)

So the “true” CMB monopole isn’t 
what we measure anyway

But this is only of order v2/c2

And this helps underscore that it’s 
coordinate-dependent

The CMB monopole



Monopole fluctuation is ambiguous -
  depends on choice of hypersurface
  (zero on constant radiation surface!)

Can still define monopole -
  through sensible coordinate choice

Obvious choice is uniform matter slice
  Or equivalently uniform energy density

Defining the monopole

Can calculate the transfer function
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Note the presence of the Laplacian term in T0(k), which
will dominate on small scales, and implies that by cal-
culating C0 we are essentially calculating the (effectively
gauge independent) matter variance ⟨(δρ/ρ)2⟩. Therefore
we expect the variance C0 to diverge on small scales,
which is simply a reflection of the nonlinear nature of
matter fluctuations on small scales today. Again, the
importance of Eq. (91) will lie in its long wavelength be-
haviour.

V. LONG-WAVELENGTH BEHAVIOUR

The dipole transfer function for a comoving observer,
Eq. (83), is plotted in Fig. 3, together with the monopole
function for an observer on a uniform energy density slice,
Eq. (91), and the transfer functions for ℓ = 2, 3, and 4.
The transfer functions for ℓ > 1 can be calculated from
Eq. (77) in exactly the same way as for the dipole, with
the result

Tℓ(k) = jℓ(krLS)+
2k

aEH̄E
j′ℓ(krLS)+6

∫ R

E
ġ(t)jℓ[kr(t)]dt.

(93)
Note that the large-scale approximations involved in
Eq. (77) imply that this expression is only valid for scales
that are super-Hubble at last scattering. (The transfer
functions T1(k) and T0(k) are valid for small scales, since
for large krLS the second-to-last terms in both Eqs. (83)
and (91) dominate.)
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FIG. 3: Dipole transfer function T1(k)T (k) for a comoving
observer (solid curve). For comparison, the monopole transfer
functions for an observer on a uniform energy density slice,
T0(k)T (k), and the transfer functions for ℓ = 2, 3, and 4 are
also shown. The scale krLS = 102 corresponds roughly to the
Hubble scale at last scattering.

Using asymptotic forms for the Bessel functions, we
can see from Eq. (93) that Tℓ(k) should decay like kℓ as
krLS → 0, for ℓ > 1. This is verified in Fig. 3. However,
the figure also shows that T1(k) does not decay like k for

small k; instead it decays like k3, which is faster than the
decay rate of T2(k). We will see in Section V that this
suppression of the dipole on large scales is a consequence
of

To examine the behaviour of the transfer function
T1(k) in the limit k → 0, we can use the small-argument
approximations to the Bessel functions to give

T1(k) = −k3

30
(
r3
LS + 3r2

LSηLS

)
+ O(k5). (94)

This expression indicates that the dipole defined with re-
spect to the comoving frame receives vanishing contribu-
tion from infinite wavelength modes. Physically, the con-
stancy of the metric perturbation ψσ during matter dom-
ination means that the contribution to the anisotropies at
the source, ψσ(E)/3 [plus Doppler], is precisely canceled
by the contribution at the reception point, nµψ;µ

σ (R), for
infinite wavelength modes, according to Eq. (77). This
insensitivity to long wavelength modes is not accidental,
but actually follows from gauge invariance and the co-
variant conservation law, as we will see in Section [?].
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FIG. 4: Dipole transfer function T1(k)T (k) for a comoving
observer. Absolute values of individual contributions from
Sachs-Wolfe terms evaluated at emission, E, and at the obser-
vation point, R, as well as the line-of-sight ISW contribution,
are indicated.

The dipole transfer function, Eq. (83), suggests a diver-
gence in C1 like a power of k on small scales, although this
is moderated by the transfer function T (k). Geometri-
cally, the comoving matter and radiation worldlines coin-
cide on large scales, and begin to diverge on small scales.
This is why the observed dipole is O(102) larger than the
other multipoles. [Plot transfer fnc] [Nonlin structure
expected to make small correction] [Need actual calcula-
tion.]

As we did for the dipole, we can again examine the
behaviour of the dipole transfer function T0(k) in the
limit k → 0, giving

T0(k) = −k2

6
(
r2
LS + 2rLSηLS

)
+ O(k4). (95)

Zibin & Scott arXiv:0808.2047

Even if monopole (and dipole) coordinate-dependent
... can still define the expected variance



Find that monopole fluctuation is indeed ~10-5

11

Note the presence of the Laplacian term in T0(k), which
will dominate on small scales, and implies that by cal-
culating C0 we are essentially calculating the (effectively
gauge independent) matter variance ⟨(δρ/ρ)2⟩. Therefore
we expect the variance C0 to diverge on small scales,
which is simply a reflection of the nonlinear nature of
matter fluctuations on small scales today. Again, the
importance of Eq. (91) will lie in its long wavelength be-
haviour.

V. LONG-WAVELENGTH BEHAVIOUR

The dipole transfer function for a comoving observer,
Eq. (83), is plotted in Fig. 3, together with the monopole
function for an observer on a uniform energy density slice,
Eq. (91), and the transfer functions for ℓ = 2, 3, and 4.
The transfer functions for ℓ > 1 can be calculated from
Eq. (77) in exactly the same way as for the dipole, with
the result

Tℓ(k) = jℓ(krLS)+
2k

aEH̄E
j′ℓ(krLS)+6

∫ R

E
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Even if monopole (and dipole) coordinate-dependent
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Defining the dipole

Dipole also ambiguous
  (zero in “CMB rest frame”!)

Choose comoving matter field

Large contribution from small-scales,
  which are non-linear 
(and Super-horizon contribution suppressed)

No “intrinsic dipole” for adiabatic perturbations
(since matter frame = CMB frame)



Defining the dipole



“Extrinsic” dipole comes from our motion
Defining the dipole



“Extrinsic” dipole comes from our motion

In principle estimate “real” motion with
  aberration
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Not in adiabatic models!
The dipole is just our velocity relative to
 the CMB LSS
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“Extrinsic” dipole comes from our motion

Or determine motion from accelerations
  due to local lumps of matter

Any deficit gives the dipole fluctuation
  (doesn’t it?)

In principle estimate “real” motion with
  aberration

Not in adiabatic models!
The dipole is just our velocity relative to
 the CMB LSS

?!?
Defining the dipole



Planck Collaboration: Peculiar velocity constraints from Planck data

Fig. 9.Bulk flow amplitudemeasured in Planck data with the all-
sky method, after subtraction (vectorially) of the Galactic contri-
bution (black crosses), compared with 95% upper limits derived
from simulations containing CMB and instrumental noise only
(blue arrows) or also including tSZ signal (black arrows). The
fact that the crosses are below the arrows at all scales shows that
there is no significant bulk flow detection.

The upper limits reach an approximately constant value above
scales around 500h−1 Mpc, as a small fraction of the clusters
in this sample are at larger distances. The 95% upper limits at
2400 h−1 Mpc are 893 km s−1 when all sources of noise are con-
sidered, reducing to 543 km s−1 when CMB plus instrumental
noise are taken into account.

The results reported in Fig. 9 refer to the nominal mask,
while in Table 2 we also quote results for the more restrictive
mask. The two sets of results are very similar, however.

In this analysis, we also fit for the direction of the measured
bulk flow. Even although the detection is not significant, it might
still be instructive to compare the best fit direction to other po-
tentially relevant directions. Results for various cluster configu-
rations and Planck data are displayed in Fig. 2, together with the
CMB dipole and the claimed dipole direction of Kashlinsky et al.
(2008). We notice that the direction we determine from Planck
data and MCXC clusters is quite different from both the CMB
dipole and the result of Kashlinsky et al. (2008). It aligns better
with the direction of the collection of clusters in the map, which
happen to be in a low instrumental noise area of the sky, as one
would expect from a noise–induced measurement. Indeed, sim-
ulations show that the directions of bulk flows of the magnitude
seen in the data cannot be recovered with great precision. Errors
are of the order of tens of degrees, depending on the bulk flow
direction (Mak et al. 2011).

Finally, we notice that the upper limits to the bulk flow that
we find with this method are above those found in the previous
section. This is not surprising, as we are fitting here for both the
velocity direction and amplitude, and we compute errors in a dif-
ferent way. The upper limits obtained with this approach should
be considered as more conservative. Nevertheless they are about
a factor of five better than what was found using WMAP data.

4.2.3. Revisiting the Kashlinsky et al. (2010) filter

The idea of constraining the local bulk flow of matter by look-
ing at the dipolar pattern of the kSZ in the galaxy cluster pop-
ulation was first discussed by Haehnelt & Tegmark (1996) and
further developed by Kashlinsky & Atrio-Barandela (2000). The
method was applied by Kashlinsky et al. (2008, 2009) toWMAP
data, analyses that have been followed by more recent studies
(Kashlinsky et al. 2010, 2011). In this section, we perform a di-
rect application of their filter to both WMAP and Planck data,
and interpret it at the light of the results already outlined in this
work.

We first implement the filter of Kashlinsky et al. (2010) on
the MCXC cluster sample and theWMAP-7 data. After using the
extended temperature KQ75 mask, we obtain filtered maps from
the cleaned Q, V and W band WMAP data. Since the filtered
maps for the four W-band Differencing Assemblies (DAs) used
by those authors are publicly available4, a direct comparison of
the filtered maps can be performed: for instance, for the filtered
maps corresponding to the fourth W-band DA, the temperature
rms outside the joint mask in our filtered map is 74µK, very
close to the 77µK obtained from the map used by Kashlinsky
et al. (2010). The rms of the difference map amounts to 35 µK,
and a visual inspection shows the similarity between both maps.
Each cluster is assigned a radius of 25′, and the remove dipole
routine from HEALPix is used when computing the monopole
and dipole in the subset of pixels surrounding the clusters. The
monopole and dipole components obtained for the WMAP W
band are displayed by the black, vertical dot-dashed lines in
Fig. 10. These are in very good agreement with the results ob-
tained by Kashlinsky et al. (2010).

We next distribute the same number of clusters surviving the
mask randomly on the unmasked sky 1000 times, assign them a
circle of radius 25′ and repeat the monopole and dipole compu-
tation. For each of the 1000 cluster configurations, we separately
compute the monopole and dipole for each of the DAs. This per-
mits us to obtain the rms for each component and DA, in such
a way that a combined estimate of the monopole and dipole can
be extracted from all DAs by inverse-variance weighting the es-
timate for each DA. This is carried out for the real cluster con-
figuration on the sky and for the 1000 mock (random) configura-
tions. From the latter, we obtain the histograms shown in Fig. 10.
The average quantities out of the 1000 simulations are displayed
by the solid, vertical lines. Black lines refer to WMAP data, and
our results show that the y-component of the dipole is peculiar,
in the sense that it falls far in the negative tail of the distribution.

When repeating these analyses with the 2D-ILCmap, we ob-
tain the results displayed by the red lines in the same figure. In
this case, the dipole components from the real data fall further
outside the distribution provided by the histograms, as none of
the 1000 mock cluster configurations provides a dipole of larger
amplitude than the one measured from the real MCXC sample.
These results suggest that the dipole measured at the MCXC
cluster positions is indeed peculiar if compared to dipole esti-
mates from randomized cluster positions.

Nevertheless, there is one aspect to be studied more closely,
namely the angular distribution of clusters on the sky. In what
follows, the filtered map built upon the 2D-ILC data will be used.
So far our Monte Carlo simulations assumed that clusters were
placed randomly on the sky, i.e., the clustering of our sources
has been neglected. We next perform tests in which the angu-
lar configuration of our MCXC cluster sample is preserved. The
4 The data were downloaded from the URL site
http://www.kashlinsky.info.
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Kinetic Sunyaev-
Zeldovich effect

Places limit on 
large bulk flows



What about Planck’s dipole?

Now the “orbital dipole” is used to 
calibrate
So the “solar dipole” can be independently 
measured
This is the currently most precise dipole



Amplitude 
(µK)

Latitude 
(deg)

Longitude 
(deg)

LFI 3365.5㼼2 48.26 264.01

HFI 3364.1㼼2 48.23㼼0.1 263.96㼼0.03

Planck 
(LFI+HFI)

3364.5㼼2 48.24㼼0.1 264.00㼼0.03

WMAP 3355㼼8 48.26㼼0.03 263.99㼼0.14

• Accuracy ~0.05%, limited by foregrounds

• Residual dipoles from component separation: ~1µK

• Very good agreement with WMAP 
(1σ, 0.3% amplitude, 3’ direction)

• 2014: Orbital dipole calibration for both LFI and HFI

Dipole calibration: Planck vs WMAPDipole calibration: Planck vs WMAP

2015
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NOT!



Planck’s new dipole amplitude:

v = 0.12345% c !
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Dipole evolves as we circle the Galaxy

Moss, Scott & Zibin arXiv:0706.4482 & 0709.4040
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Doppler boosting the CMB
Based on this paper:
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1991ApJ...371L...1S

e.g. first COBE results − Smoot et al. (1991)

CMB dipole is well known



Monopole from COBE FIRAS (and ground-based experiments)

Dipole from COBE FIRAS/DMR and WMAP and now Planck

Recall issues relevant to monopole and dipole



• Monopole: T₀=(2.7255±0.0006)K

• CMB last-scattering surface defines a rest frame

• It’s the frame with no observable dipole

• Relative to that frame we’re moving at ≈ 370km/s

• β=0.0012345 towards the constellation Crater

• And there are other effects...

Monopole from COBE FIRAS (and ground-based experiments)

Dipole from COBE FIRAS/DMR and WMAP and now Planck

Recall issues relevant to monopole and dipole



• Dipole-modulate monopole → CMB dipole

• Dipole-modulation of all other multipoles

• Aberration of anisotropies

• Increase in monopole by β²/6

• All-sky spectral (y) distortion

• Generation of Ο(β²) quadrupole

Peebles & Wilkinson (1968); Challinor & van Leeuwen (2002);

Kamionkowski & Knox (2003); Burles & Rappaport (2006);

Sollom (2010); Kosowsky & Kahniashvili 2010; Chluba (2011)

6 boosting effects
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6 boosting effects
Well known!

This talk

This talk

Unmeasurable

Uninteresting?

Spectrum?
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ations in the velocity direction, and reduces them in the oppo-
site direction. This is the same e�ect which converts a portion
of the CMB monopole into the observed dipole. The e�ect on
the CMB fluctuations is to increase the amplitude of the power
spectrum by approximately 0.25% in the velocity direction, and
decrease it correspondingly in the anti-direction. Second, there
is an “aberration” e�ect, in which the apparent arrival direc-
tion of CMB photons is pushed toward the velocity direction.
This e�ect is small, but non-negligible. The expected velocity
induces a peak deflection of � = 4.2⇧ and a root-mean-squared
(rms) deflection over the sky of 3⇧, comparable to the e�ects
of gravitational lensing by large-scale structure, which are dis-
cussed in Planck Collaboration XVII (2013). The aberration ef-
fect squashes the anisotropy pattern on one side of the sky and
stretches it on the other, e�ectively changing the angular scale.
Close to the velocity direction we expect that the power spec-
trum of the temperature anisotropies, C⇧, will be shifted so that,
e.g., ⇧= 1000⌅ ⇧= 1001, while ⇧= 1000⌅ ⇧= 999 in the anti-
direction. In Fig. 1 we plot an exaggerated illustration of the
aberration and modulation e�ects. For completeness we should
point out that there is a third e�ect, a quadrupole of amplitude
�2 induced by the dipole (see Kamionkowski & Knox 2003).
However, extracting this signal would require extreme levels of
precision for foreground modelling at the quadrupole scale, and
we do not discuss it further.

In this paper, we will present a measurement of �, exploiting
the distinctive statistical signatures of the aberration and mod-
ulation e�ects on the high-⇧ CMB temperature anisotropies. In
addition to our interest in making an independent measurement
of the velocity signature, the e�ects which velocity generates on
the CMB fluctuations provide a source of potential bias or con-
fusion for several aspects of the Planck data. In particular, ve-
locity e�ects couple to measurements of: primordial “⇤NL”-type
non-Gaussianity, as discussed in Planck Collaboration XXIV
(2013); statistical anisotropy of the primordial CMB fluctua-
tions, as discussed in Planck Collaboration XXIII (2013); and
gravitational lensing, as discussed in Planck Collaboration XVII
(2013). There are also aspects of the Planck analysis for which
velocity e�ects are believed to be negligible, but only if they are
present at the expected level. One example is measurement of
fNL-type non-Gaussianity, as discussed in Catena et al. (2013).
Another example is power spectrum estimation — as discussed
above, velocity e�ects change the angular scale of the acous-
tic peaks in the CMB power spectrum. Averaged over the full
sky this e�ect is strongly suppressed, as the expansion and con-
traction of scales on opposing hemispheres cancel out. However
the application of a sky mask breaks this cancellation to some
extent, and can potentially be important for parameter estima-
tion (Pereira et al. 2010; Catena & Notari 2012). For the 143
and 217 GHz analysis mask used in the fiducial Planck CMB
likelihood (Planck Collaboration XV 2013), the average lensing
convergence field associated with the aberration e�ect (on the
portion of the sky which is unmasked) has a value which is 13%
of its peak value, corresponding to an expected average lensing
convergence of �⇥ 0.13 = 1.5⇥ 10�4. This will shift the angular
scale of the acoustic peaks by the same fraction, which is degen-
erate with a change in the angular size of the sound horizon at
last scattering, ⇥⇤ (Burles & Rappaport 2006). A 1.5⇥ 10�4 shift
in ⇥⇤ is just under 25% of the Planck uncertainty on this param-
eter, as reported in Planck Collaboration XVI (2013) — small
enough to be neglected, though not dramatically so. This there-
fore motivates us to test that the observed aberration signal is
not significantly larger than expected. With such a confirmation
in hand, a logical next step is to correct for these e�ects by a pro-

(a) T primordial

(b) Taberration

(c) Tmodulation

Fig. 1. Exaggerated illustration of the Doppler aberration and
modulation e�ects, in orthographic projection, for a velocity
v = 260 000 km s�1 = 0.85c (approximately 700 times larger
than the expected magnitude) toward the northern pole (indi-
cated by meridians in the upper half of each image on the left).
The aberration component of the e�ect shifts the apparent posi-
tion of fluctuations toward the velocity direction, while the mod-
ulation component enhances the fluctuations in the velocity di-
rection and suppresses them in the anti-velocity direction.

cess of de-boosting the observed temperature (Notari & Quartin
2012; Yoho et al. 2012).

Before proceeding to discuss the aberration and modulation
e�ects in more detail, we note that in addition to the overall pe-
culiar velocity of our Solar System with respect to the CMB,
there is an additional time-dependent velocity e�ect from the or-
bit of Planck (at L2, along with the Earth) about the Sun. This
velocity has an average amplitude of approximately 30 km s�1,
less than one-tenth the size of the primary velocity e�ect. The
aberration component of the orbital velocity (more commonly
referred to in astronomy as “stellar aberration”) has a maximum
amplitude of 21⇧⇧ and is corrected for in the satellite pointing.
The modulation e�ect for the orbital velocity switches signs be-
tween each 6-month survey, and so is suppressed when using
multiple surveys to make maps (as we do here, with the nominal
Planck maps, based on a little more than two surveys), and so
we will not consider it further.
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Fig. 3. Measured dipole direction �̂ in Galactic coordinates as a function of the maximum temperature multipole used in the
analysis, ⌦max. We plot the results for the four data combinations discussed in Sect. 4: 143⇥ 143 (H symbol); 217⇥ 217 (N symbol);
143 ⇥ 217 (⇥ symbol); and 143 + 217 (+ symbol). The CMB dipole direction �⌅ has been highlighted with 14⇤ and 26⇤ radius
circles, which correspond roughly to our expected uncertainty on the dipole direction. The black cross in the lower hemisphere is
the modulation dipole anomaly direction found for WMAP at ⌦max = 64 in Hoftuft et al. (2009), and which is discussed further in
Planck Collaboration XXIII (2013). Note that all four estimators are significantly correlated with one another, even the 143 ⇥ 143
and 217 ⇥ 217 results, which are based on maps with independent noise realizations. This is because a significant portion of the
dipole measurement uncertainty is from sample variance of the CMB fluctuations, which is common between channels.

well as the corresponding 2⇤ contour arctan(2/4) = 26⇤. It is
apparent that the measured velocity directions are in reasonable
agreement with the CMB dipole.

We now proceed to break the measurement of Fig. 3 into
its constituent parts for ⌦max = 2000 (and truncating now at
⌦min = 500). In Fig. 4 we plot our quadratic estimates of the
three components of �, as well as the decomposition into aberra-
tion and modulation components for each of our four frequency
combinations. The vertical lines in Fig. 4 give the amplitude es-
timates for each component measured from the data, while the
coloured and grey histograms give the distribution of these quan-
tities for the 143 ⇥ 217 estimator, for simulations with and with-
out velocity e�ects, respectively (the other estimators are simi-
lar). As expected, the velocity e�ects show up primarily in �⌅;
there is little leakage into other components with our sky mask.
For all four estimators, we see that the presence of velocity along
�⌅ is strongly preferred over the null hypothesis. At 143 GHz this
signal comes from both ⇧̂ ⌅ and ⌅̂ ⌅. At 217 GHz it comes primar-
ily from ⌅̂ ⌅. Additionally, there is a somewhat unexpected signal
at 217 GHz in the �⇥ direction, again driven by the ⌅ component.
Given the apparent frequency dependence, foreground contami-
nation seems a possible candidate for this anomalous signal. We
will discuss this possibility further in the next section.

In Table 1 we present ⌃2 values for the � measurements of
Fig. 4 under both the null hypothesis of no velocity e�ects, and
assuming the expected velocity direction and amplitude. We can
see that all of our measurements are in significant disagreement
with the “no velocity” hypothesis. The probability-to-exceed
(PTE) values for the “with velocity” case are much more rea-
sonable. Under the velocity hypothesis, 217⇥217 has the lowest
PTE, of 11%, driven by the large �̂ ⇥.

In Table 2 we focus on our measurements of the veloc-
ity amplitude along the expected direction �⌅, as well as per-
forming null tests among our collection of estimates. For this
table, we have normalized the estimators, such that the aver-
age of �̂ ⌅ on boosted simulations is equal to the input value
of 369 km s�1. For all four of our estimators, we find that this
normalization factor is within 0.5% of that given by Nx�⇥ f⌅,sky,
as is already apparent from the triangles along the horizontal
axis of Fig. 4. We can see here, as expected, that our estimators
have a statistical uncertainty on �⌅ of between 20% and 25%.
However, several of our null tests, obtained by taking the dif-
ferences of pairs of �⌅ estimates, fail at the level of 2–3⇤. We
take the 143 ⇥ 217 GHz estimator as our fiducial measurement;
because it involves the cross-correlation of two maps with in-
dependent noise realizations it should be robust to noise mod-

6

Results

  ▼ : 143x143
 ▲ : 217x217
 × : 143x217
 + : 143+217



Planck Collaboration: Doppler boosting of the CMB: Eppur si muove

Fig. 3. Measured dipole direction �̂ in Galactic coordinates as a function of the maximum temperature multipole used in the
analysis, ⌦max. We plot the results for the four data combinations discussed in Sect. 4: 143⇥ 143 (H symbol); 217⇥ 217 (N symbol);
143 ⇥ 217 (⇥ symbol); and 143 + 217 (+ symbol). The CMB dipole direction �⌅ has been highlighted with 14⇤ and 26⇤ radius
circles, which correspond roughly to our expected uncertainty on the dipole direction. The black cross in the lower hemisphere is
the modulation dipole anomaly direction found for WMAP at ⌦max = 64 in Hoftuft et al. (2009), and which is discussed further in
Planck Collaboration XXIII (2013). Note that all four estimators are significantly correlated with one another, even the 143 ⇥ 143
and 217 ⇥ 217 results, which are based on maps with independent noise realizations. This is because a significant portion of the
dipole measurement uncertainty is from sample variance of the CMB fluctuations, which is common between channels.

well as the corresponding 2⇤ contour arctan(2/4) = 26⇤. It is
apparent that the measured velocity directions are in reasonable
agreement with the CMB dipole.

We now proceed to break the measurement of Fig. 3 into
its constituent parts for ⌦max = 2000 (and truncating now at
⌦min = 500). In Fig. 4 we plot our quadratic estimates of the
three components of �, as well as the decomposition into aberra-
tion and modulation components for each of our four frequency
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tities for the 143 ⇥ 217 estimator, for simulations with and with-
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lar). As expected, the velocity e�ects show up primarily in �⌅;
there is little leakage into other components with our sky mask.
For all four estimators, we see that the presence of velocity along
�⌅ is strongly preferred over the null hypothesis. At 143 GHz this
signal comes from both ⇧̂ ⌅ and ⌅̂ ⌅. At 217 GHz it comes primar-
ily from ⌅̂ ⌅. Additionally, there is a somewhat unexpected signal
at 217 GHz in the �⇥ direction, again driven by the ⌅ component.
Given the apparent frequency dependence, foreground contami-
nation seems a possible candidate for this anomalous signal. We
will discuss this possibility further in the next section.

In Table 1 we present ⌃2 values for the � measurements of
Fig. 4 under both the null hypothesis of no velocity e�ects, and
assuming the expected velocity direction and amplitude. We can
see that all of our measurements are in significant disagreement
with the “no velocity” hypothesis. The probability-to-exceed
(PTE) values for the “with velocity” case are much more rea-
sonable. Under the velocity hypothesis, 217⇥217 has the lowest
PTE, of 11%, driven by the large �̂ ⇥.

In Table 2 we focus on our measurements of the veloc-
ity amplitude along the expected direction �⌅, as well as per-
forming null tests among our collection of estimates. For this
table, we have normalized the estimators, such that the aver-
age of �̂ ⌅ on boosted simulations is equal to the input value
of 369 km s�1. For all four of our estimators, we find that this
normalization factor is within 0.5% of that given by Nx�⇥ f⌅,sky,
as is already apparent from the triangles along the horizontal
axis of Fig. 4. We can see here, as expected, that our estimators
have a statistical uncertainty on �⌅ of between 20% and 25%.
However, several of our null tests, obtained by taking the dif-
ferences of pairs of �⌅ estimates, fail at the level of 2–3⇤. We
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Fig. 3. Measured dipole direction �̂ in Galactic coordinates as a function of the maximum temperature multipole used in the
analysis, ⌦max. We plot the results for the four data combinations discussed in Sect. 4: 143⇥ 143 (H symbol); 217⇥ 217 (N symbol);
143 ⇥ 217 (⇥ symbol); and 143 + 217 (+ symbol). The CMB dipole direction �⌅ has been highlighted with 14⇤ and 26⇤ radius
circles, which correspond roughly to our expected uncertainty on the dipole direction. The black cross in the lower hemisphere is
the modulation dipole anomaly direction found for WMAP at ⌦max = 64 in Hoftuft et al. (2009), and which is discussed further in
Planck Collaboration XXIII (2013). Note that all four estimators are significantly correlated with one another, even the 143 ⇥ 143
and 217 ⇥ 217 results, which are based on maps with independent noise realizations. This is because a significant portion of the
dipole measurement uncertainty is from sample variance of the CMB fluctuations, which is common between channels.

well as the corresponding 2⇤ contour arctan(2/4) = 26⇤. It is
apparent that the measured velocity directions are in reasonable
agreement with the CMB dipole.

We now proceed to break the measurement of Fig. 3 into
its constituent parts for ⌦max = 2000 (and truncating now at
⌦min = 500). In Fig. 4 we plot our quadratic estimates of the
three components of �, as well as the decomposition into aberra-
tion and modulation components for each of our four frequency
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timates for each component measured from the data, while the
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tities for the 143 ⇥ 217 estimator, for simulations with and with-
out velocity e�ects, respectively (the other estimators are simi-
lar). As expected, the velocity e�ects show up primarily in �⌅;
there is little leakage into other components with our sky mask.
For all four estimators, we see that the presence of velocity along
�⌅ is strongly preferred over the null hypothesis. At 143 GHz this
signal comes from both ⇧̂ ⌅ and ⌅̂ ⌅. At 217 GHz it comes primar-
ily from ⌅̂ ⌅. Additionally, there is a somewhat unexpected signal
at 217 GHz in the �⇥ direction, again driven by the ⌅ component.
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nation seems a possible candidate for this anomalous signal. We
will discuss this possibility further in the next section.

In Table 1 we present ⌃2 values for the � measurements of
Fig. 4 under both the null hypothesis of no velocity e�ects, and
assuming the expected velocity direction and amplitude. We can
see that all of our measurements are in significant disagreement
with the “no velocity” hypothesis. The probability-to-exceed
(PTE) values for the “with velocity” case are much more rea-
sonable. Under the velocity hypothesis, 217⇥217 has the lowest
PTE, of 11%, driven by the large �̂ ⇥.

In Table 2 we focus on our measurements of the veloc-
ity amplitude along the expected direction �⌅, as well as per-
forming null tests among our collection of estimates. For this
table, we have normalized the estimators, such that the aver-
age of �̂ ⌅ on boosted simulations is equal to the input value
of 369 km s�1. For all four of our estimators, we find that this
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axis of Fig. 4. We can see here, as expected, that our estimators
have a statistical uncertainty on �⌅ of between 20% and 25%.
However, several of our null tests, obtained by taking the dif-
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Sky appears dipole-modulated
at large angular scales

(see Planck 2015 I&S paper)
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duced by masking:

f1m ≡
∫

dΩ Y ∗
1m(Ω)M(Ω), (45)2050

where M(Ω) is the mask. Finally, we correct the direc-
tion for the effects of inhomogeneous noise which is not ac-
counted for in the filtering process, by weighting the X̃m by
the inverse of the variance derived from filtered and mean-2055

field corrected simulations.
The physics is readily accessible in this estimator: the

ℓ dependence in modulation determined by the parameter
X is expressed in the δCℓℓ+1 factor, and the relevant scales
appear directly in the limits of the sum. We consider the2060

estimator over the range ℓmin = 2 ≤ ℓ ≤ ℓmax. The modu-
lation amplitude and direction are then given by

Ã =
√

X̃2
0 + 2|X̃1|2, (46)

θ̃ = cos−1

(

X̃0

Ã

)

, (47)

φ̃ = − tan−1

(

Im[X̃1]

Re[X̃1]

)

. (48)2065

It is worth re-emphasizing that the quantities Ã, θ̃, and φ̃
are all dependent on the ℓ range considered.

As a consequence of the central limit theorem, for
sufficiently large ℓmax, the X̃s are Gaussian distributed2070

with mean zero, so that the amplitude parameter is then
Maxwell-Boltzmann distributed. We fit to this distribution
for ℓmax ≥ 10 when computing the p-value so as not to be
influenced by Poisson noise in the tails of the empirical dis-
tribution (and we have determined that this is a good fit to2075

the simulations by applying a Kolmogorov-Smirnoff test).
For the case of scalar amplitude modulation (i.e., X = As),
and ℓmin = 2, the cosmic-variance-limited expectation for
the modulation amplitude from statistically isotropic skies
is2080

〈

∆As

As

〉

≃

√

48

π(ℓmax + 4)(ℓmax − 1)
. (49)

This is the cosmic variance for a scale-invariant dipole mod-
ulation, and gives a more explicit expression than the ℓ−1

max
scaling discussed in Hanson & Lewis (2009).2085

The top panel of Fig. 30 presents results for the p-value
of the fitted modulation amplitude as a function of ℓmax.
Note that there are several peaks, at ℓ ≃ 40 and ℓ ≃ 67 (the
focus of most attention in the literature), and ℓ ≃ 240. The
latter peak, while not previously emphasized, is also present2090

in the WMAP results (see Fig. 15 in Bennett et al. 2011).
It is also interesting to note that a modulation amplitude is
observed at ℓmax ≃ 800 that is somewhat lower than what
one would typically expect for a statistically isotropic sky.
However, the significance is not at the level of the excess2095

dipole modulation at low ℓ and will not be discussed fur-
ther. The dip at ℓmax ≃ 67, with a p-value of 0.9–1.0 %,
corresponds to the well-known low-ℓ dipole modulation.6

6 Actually only SEVEM and SMICA achieve their minimum at
ℓmax = 67, whereas NILC and Commander achieve theirs at
ℓmax = 14 and 240, respectively. Such scatter is expected when
searching over a large number of possible ℓ ranges. The recon-
structed amplitudes for each component-separation method are
well within the error budgets of the estimator.
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Fig. 30. Probability determined from the QML analysis for a
Monte Carlo simulation to have a larger dipole modulation am-
plitude than the Commander (red), NILC (orange), SEVEM (green),
and SMICA (blue) data sets, with (top panel) ℓmin = 2 or (bottom
panel) ℓmin = 100. No significant modulation is found once the
low-ℓ signal is removed. We emphasize that the statistic here is
cumulative and apparent trends in the curves can be misleading.

Table 23 presents the corresponding dipole modulation pa-
rameters, which are seen to be consistent with previous 2100

studies. Note that the mean amplitude expected for a set
of statistically isotropic simulations at this ℓmax is 2.9 %
(in close agreement with the expected value due to cosmic
variance, Eq. 49).

We have therefore determined a phenomenological sig- 2105

nature of modulation for ℓ = 2–67 with a p-value of 0.9–
1.0 %. If such a signal had been predicted by a specific
model, then we could claim a significance of about 3 σ. How-
ever, in the absence of such an a priori model, we can assess
how often we might find a 3 σ effect by chance, given that it 2110

could have occurred over any ℓ range. Since we are looking
for a large-scale phenomenon, we assume that the analysis
should include the corresponding low-ℓ modes and start at

Article number, page 34 of 59

Map modulation is half of 
this, e.g. 2.9% for lmax=67



Dipolar power modulation: 
harmonic analysis 
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We use the harmonic QML estimator introduced in Moss et al 2011 (see also The 
Planck Collaboration, 2014, 571:A17-A27) to Planck intensity maps. 

For ℓmin=2 we found a ~3σ dipole modulation at ℓmax~65 with a ~6.3% amplitude. 

There is also evidence for modulations at ℓmax~40, and ℓmax~240. 

However, the latter becomes much less significant when adopting ℓmin=100, i.e. 
removing large angular scales. 
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Dipolar power modulation: 
harmonic analysis 
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When analyzing (isotropic) simulations we found 
even more significant modulations, depending 
on the choice of ℓmax. 

However, there is no a priori reason to adopt 
ℓmax~65, and there is only the a posteriori 
observation that ℓmax~65 provides the most 
significant detection. 

Hence, we use simulations to derive the 
probability of finding a modulation as significant 
as in the Planck data as a function of ℓmax. 

This is known as multiplicity of tests, a posteriori 
correction, or look-elsewhere effect.  

Accounting for this reduces the significance of 
the modulation to PTE~15-20% at ℓmax~65. 
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Right now the result doesn’t 
look very remarkable

But if we had a predictive model 
that would change everything

Large scales are special, so we 
should keep looking

Polarization offers the promise 
of an independent test



Quadrupole:
also some special issues

but out of time ...
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