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21-cm emission as a tracer of large-scale structure

Neutral hydrogen (HI) has a long-lived emission line at Ap=21cm

Is triplet Is singlet



21-cm emission as a tracer of large-scale structure
Neutral hydrogen (HI) has a long-lived emission line at Ap=21cm

Intensity mapping: by observing the radio sky as a function of angle
0,9 and wavelength A, make a 3D map of fluctuations in HI density

(or HI thermal state).

Chang et al 2008,
Wyithe and Loeb 2008
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21-cm emission as a tracer of large-scale structure
Neutral hydrogen (HI) has a long-lived emission line at Ap=21cm

Intensity mapping: by observing the radio sky as a function of angle
0,9 and wavelength A, make a 3D map of fluctuations in HI density

(or HI thermal state).

At high redshifts (5 = z = 12), HI fluctuations are mainly sourced by
reionization bubbles; we get a map of patchy reionization.

" Ciardi & Madau 2003



21-cm emission as a tracer of large-scale structure
Neutral hydrogen (HI) has a long-lived emission line at Ap=21cm

Intensity mapping: by observing the radio sky as a function of angle
0,9 and wavelength A, make a 3D map of fluctuations in HI density

(or HI thermal state).

At high redshifts (5 = z = 12), HI fluctuations are mainly sourced by
reionization bubbles; we get a map of patchy reionization.

At low redshifts, hydrogen 1s mostly 1onized.
Some HI survives in “self-shielding” systems.
(CHIME: 0.8 <z <2.5)




21-cm emission as a tracer of large-scale structure
Neutral hydrogen (HI) has a long-lived emission line at Ap=21cm

Intensity mapping: by observing the radio sky as a function of angle
0,9 and wavelength A, make a 3D map of fluctuations in HI density

(or HI thermal state).

At high redshifts (5 = z = 12), HI fluctuations are mainly sourced by
reionization bubbles; we get a map of patchy reionization.

At low redshifts, hydrogen 1s mostly 1onized.

Some HI survives in “self-shielding” systems.
(CHIME: 0.8 <z <2.5)

Since HI systems trace large-scale structure,
we get a 3D map of the cosmological density
field (individual HI systems unresolved)




21-cm emission as a tracer of large-scale structure

Can use this 3D map to do large-scale structure: baryon acoustic
oscillations, lensing, redshift-space distortions, etc.

Main goal of CHIME 1s to measure the BAO “standard ruler”
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CHIME

- No moving parts, sky 1s surveyed via Earth rotation
 Frequency range 400-800 MHz (redshift 0.8 <z <2.5)
“Pathfinder” instrument running! (128 dual-pol feeds, 40x25 m?)
- Full instrument under construction (1024 feeds, 80x100 m?
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Reflectors:

- instrumented with 1024 (4x256) feeds
- each feed “sees” narrow primary beam
- Earth rotation gives full sky coverage

North-South:
~100 deg

Y

East-West: ~1.3 deg
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Analog chain:
- amplifies signal and bandlimits

400 <v <3800 MHz.

- output of this stage 1s two anal
(polarizations) for each feed
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CHIME

FPGA channelizer:
re elctors - analog to digital conversion
. - digital channelization into 1024
amplifiers, frequency bands (4v = 380 kHZ)
analog filters . . ..
- output of this stage 1s 1024 digital
' timestreams per polarization per feed
FPGA
channelizer
l
GPU :
correlator
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CD' k> Realtime
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CHIME

GPU correlator:
re elctors - correlates different feeds/polarizations
. in same frequency channel
amplitiers, - output roughly consists of an I,Q,U,V
analog filters measurement for every synthetic beam
| and frequency channel
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CHIME

Realtime backend:

reflectors
.l - Transient searches have data volumes
amplifiers, too large to write to disk, must
analog filters search in real time.
}
FPGA - E.g. fast radioobursts: duration ~1 ms,
channelizer data volume 1s ~1 petabyte/day!
l - Backend recently funded, currently
y
GPU in design stage
correlator
' N
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BAO forecasts

The CHIME pathfinder 1s an interesting BAO experiment,
comparable to current surveys.

Full CHIME 1s a Stage-1V dark energy experiment!

CHIME pathfinder Full CHIME
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Foregrounds: the reason th
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Foregrounds: the reason this is hard

Strategy: radio foregrounds are very spectrally smooth, whereas
21-cm anisotropy has small-scale power 1n the frequency (radial)

direction.

So foregrounds and 21-cm can be separated by high-pass

filtering along the frequency axis.
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Foregrounds: the reason this is hard

Problem: beam 1s frequency-dependent (diffractive) which
leads to mode mixing. Naive high-pass filtering doesn’t work.
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Foregrounds: the reason this is hard

Shaw et al 2013, 2014: can separate foregrounds and 21-cm by
linear algebra tricks 1f the instrument 1s perfectly characterized.
(Key 1dea: use block diagonality in m)
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A~ 1.00

= NoFG | Full FG-

0.70

- 0.50

- 0.30

0.20

0.15

l’ié
LU AR

0.10

% ¥ ¥ 3 3

- 0.07

&

0.05




Foregrounds: the reason this is hard

Instrument must be very well-characterized. From sims:
- Calibration requirement (complex gains) ~1%
- Beam modeling requirement ~0.1%

Other 1deas which filter more aggressively may also be usetul:
- Foreground “wedge”?
- Delay-space filtering?



Fast radio bursts

Frequency (MHz)

0

RB0102
RB1102
RB1106
RB1107
RB1201

RB1211

\ 1494 MHz -
‘wmwwkaMwMWM
1369 MHz -

\

Flux Density (Jy)

O =N O = N QO e N

-24-16-8 0 8 16 24 32

A \\W«wk-,,w-

] 1219 MHz -

“xﬁ-'\“('-&‘ l’]"‘v A

Time (ms)

2000 400 600 800 1000 1200 1400

Time (ms)

DM (pc cm
375
944
723
1103
553
557

Z
~0.3
~0.81
~0.061
~0.96
~0.45
~0.20



Noise (n)y / pixel / day)
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CHIME 1s an enormous computation:
- Total bandwidth 6.4 Tbps (global internet: ~250 Tbps!)
- Correlator 1s ~7 petatflops (achieved by bit-packing tricks)
- Reduced data 1s tens of TB per day

Moore’s law: key computing parameters (e.g. flops/watt, network
speed, memory bandwidth) increase exponentially with doubling
tlme TMoore ~ 24 monthS.

Building an instrument like CHIME has just become possible
(on a reasonable budget) recently:

- cheap teraflop gaming GPU’s

- cheap 10Gbps ethernet



The 21cm (auto) power spectrum hasn’t been detected yet, but we
hope to measure 1t well enough to be a stage-1V dark energy
experiment! (CMB analog: pre-COBE—Planck in one experiment?)

Great promise: 1if CHIME works well, cost of scaling up
the collecting area A 1s either
- proportional to A, or (e.g. reflector)
- proportional to A exp(-T/Tmoore) ! (e.g. correlator)

Most scalable way to measure more large-scale structure modes



A huge volume 1s potentially measurable

Can try to map
(1) low-z
(2) reionization
(3) dark ages
... although foreground temperature varies as T ~ (1+2z)*>

At high z, the power spectrum T
goes out to very high k, so there , ~400 Gpe®
1s essentially no fundamental
limit on how many modes we
might measure

Reionization Figure: K. Vanderlinde







