Large scale structure formation
with the
Schrödinger method

Cora Uhlemann
Arnold Sommerfeld Center, LMU
& Excellence Cluster Universe
Advisor: Stefan Hofmann
in collaboration with
Michael Kopp, University of Cyprus

Cosmo Cruise 2015, September 7
-13.8 billion years: nearly uniform initial state

today: rich structures in cosmic web
-13.8 billion years: nearly uniform initial state

Inflation
• established `boring` initial conditions
 • quantum fluctuations get amplified
 • primordial plasma cools \rightarrow recombination \rightarrow CMB

Structure formation
• hierarchical
• tiny over-densities act as seeds
 • congregation via gravitational instability
 • collapse into bound structures

Large scale structure: Cold Dark Matter
• linear regime
 ✓ analytically understood
• nonlinear stage
 ?! N-body simulations inevitable

today: rich structures in cosmic web
Describing Cold Dark Matter with the Schrödinger method
Describing Cold Dark Matter

Phase space distribution function $f(t,x,p)$
- describes number density & distribution of momenta p

Theoretical expectation

Numerical realization

Pueblas & Scoccimarro (2009, PRD 80)

Widrow (1997, PRD 55)
Describing Cold Dark Matter

phase space distribution function \(f(t,x,p) \)
- **N-body**: non-relativistic, only gravitationally
- **continuous**: ensemble average, no collisions

\[
f_N = \sum_i \delta_D(x - x_i) \delta_D(p - p_i)
\]

Vlasov - Poisson equation

\[
\partial_\tau f(x, p, \tau) = -\frac{p}{am} \nabla_x f + am \nabla_x V \nabla_p f
\]

gravitational potential

\[
\Delta V(x, \tau) = \frac{4\pi Gm}{a} (n(x, \tau) - \langle n \rangle)
\]

integro

number density

\[
n = \int d^3p \ f
\]

Solving is hard!

have to choose a special ansatz
for phase space distribution \(f(x,p) \)
Describing Cold Dark Matter

phase space distribution function \(f(t,x,p) \)
- **N-body**: non-relativistic, only gravitationally
- **continuous**: ensemble average, no collisions

\[
\partial_\tau f(x,p,\tau) = -\frac{p}{am} \nabla_x f + am \nabla_x V \nabla_p f
\]

Vlasov - Poisson equation

\[
\nabla \cdot \Delta V(x,\tau) = \frac{4\pi G m}{a} (n(x,\tau) - \langle n \rangle)
\]

Hierarchy of Moments

\[
M^{(n)}(x) = \int d^3p \ p_{i_1} \ldots p_{i_n} f
\]

- density \(n(x) \): \(M^{(0)} = n(x) \), velocity \(v(x) \): \(M^{(1)} = n v(x) \)
- velocity dispersion \(\sigma(x) \): \(M^{(2)} = n (v v + \sigma(x)), \ldots \)

\[
\partial_t M^{(n)} = -\frac{1}{a^2 m} \nabla \cdot M^{(n+1)} - m \nabla V \cdot M^{(n-1)}
\]

infinite coupled hierarchy
Dust model

dust model
- only consistent truncation of hierarchy
- pressureless fluid: density and velocity

\[f_d(x, p, \tau) = n(x, \tau) \delta_D^3 (p - \nabla \phi(x, \tau)) \]

Continuity
\[\partial_\tau n = -\frac{1}{am} \nabla (n \nabla \phi) \]

Euler
\[\partial_\tau \phi = -\frac{1}{2am} (\nabla \phi)^2 - amV \]

- limited to **single-stream**
- no velocity dispersion, …
- shell-crossing singularities
- no virialization
Schrödinger method at a glance

WANTED
N-body double f_N

$\sigma_x \ll x_{\text{typ}}$

$\sigma_p \ll p_{\text{typ}}$

coarse grained Vlasov f_{cg}

\[\begin{align*}
\text{time-evolution} \\
\text{shell-crossing}
\end{align*} \]

\rightarrow

dust f_d

\rightarrow

coarse grained Wigner f_{cg}

\leftarrow

Takahashi (1989, PTP 98)

\rightarrow

Wigner f_W
Schrödinger method

Schrödinger method
- Coarse-grained Wigner function, constructed from self-gravitating field

\[f_{cw}(x, p) = \int \frac{d^3x' d^3p'}{(\pi \sigma_x \sigma_p)^3} \exp \left[-\frac{(x - x')^2}{2\sigma_x^2} - \frac{(p - p')^2}{2\sigma_p^2} \right] \]

degrees of freedom
- 2: amplitude n & phase \(\phi \)

parameters
- coarse-graining \(\sigma_x, \sigma_p \)
 - fundamental resolution \(\sigma_x \sigma_p \gtrsim \hbar / 2 \)
- Schrödinger scale \(\hbar \)
 - degree of restriction
 - dust as special case

\[\psi = \sqrt{n} \exp \left(\frac{i}{\hbar} \phi \right) \]

Schrödinger - Poisson equation

\[i\hbar \partial_t \psi = \left[-\frac{\hbar^2}{2am} \Delta + mV \right] \psi \]

\[\Delta V = \frac{4\pi G \rho_0}{a} (|\psi|^2 - 1) \]

Continuity
\[\partial_\tau n = -\frac{1}{am} \nabla (n \nabla \phi) \]

Euler
\[\partial_\tau \phi = -\frac{1}{2am} (\nabla \phi)^2 - amV + \frac{\hbar^2}{2am} \left(\frac{\Delta \sqrt{n}}{\sqrt{n}} \right) \]

quantum potential
Features of Schrödinger Method

Multi-streaming

❌ dust model: fails at shell-crossing
✅ Schrödinger method: can go beyond shell-crossing

blue S contours: Schrödinger method
red dotted Z line: Zeldovich solution (dust model)

Virialization

❌ even in extended models: no virialization
✅ Schrödinger method: bound structures like halos
Features of Schrödinger Method

- Prevention of shell-crossing singularities
- Occurrence of phase jumps
- \(\psi = \sqrt{n} e^{i\phi/h} \) free of pathologies
Features of Schrödinger Method

Schrödinger method

- **Coarse-grained Wigner function**, constructed from self-gravitating field

\[f_{\text{W}}(x, p) = \int \frac{d^3 x' d^3 p'}{(\pi \sigma_x \sigma_p)^3} \exp \left[-\frac{(x - x')^2}{2\sigma_x^2} - \frac{(p - p')^2}{2\sigma_p^2} \right] \int \frac{d^3 \tilde{x}}{(2\pi \hbar)^3} \exp \left[\frac{i}{\hbar} p' \cdot \tilde{x} \right] \psi(x' - \tilde{x}) \bar{\psi}(x' + \tilde{x}) \]

Cumulants

- lowest two: macroscopic density & velocity

\[\bar{n}(x) = \exp \left[\frac{1}{2} \sigma_x^2 \Delta \right] n(x) \quad \bar{v}(x) = \frac{1}{am\bar{n}(x)} \exp \left[\frac{1}{2} \sigma_x^2 \Delta \right] (n \nabla \phi)(x) \]

- higher cumulants given self-consistently

\[C^{(0)} = \ln n, \quad C^{(1)} = \nabla \phi \]

\[C^{(n+2)} = -\frac{\hbar^2}{4} \nabla \nabla C^{(n)} \quad \text{from Wigner} \]

add coarse-graining to determine the moments

closure of hierarchy

CU, Kopp & Haugg (2014, PRD 90, 023517)
Multi-streaming

- higher cumulants encode multi-streaming effects
- during shell-crossing: higher moments sourced dynamically

Schrödinger method: cumulants at $x = -0.5$ Mpc: all equally important after shell crossing
Schrödinger method at a glance

WANTED

N-body double f_N

V-body double f_N

Coarse grained Vlasov f_{cg}

Coarse grained Wigner f_{cg}

dust f_d

W-body double f_W

Virialization

- **FAILS** even in extended models
- **SUCCESS** in bound structures

Features of Schrödinger Method

- **Beyond shell-crossing**
- **No virialization**

Virial density $C_{1,2,3}$

- $C_1 = 0.0$
- $C_2 = 0.5$
- $C_3 = 1.0$
- $C_4 = 1.5$
- $C_5 = 2.0$
- $C_6 = 2.5$

After shell-crossing: all cumulants important
Schrödinger method
- models CDM using a self-gravitating scalar field
- analytical tool to access nonlinear stage of structure formation
 - describes multi-streaming
 - allows for virialization

Future research
- understand universal density profiles of halos (NFW)
 - search stationary solutions of gravitational collapse
- consider a flow of time or phase-space resolution \hbar
 - possible interpretation in terms of phase transition
- DM models: wavelike (axion), warm & (non-)relativistic neutrinos