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Local non-Gaussianity

Gaussianity

Standard inflationary model 7→ Gaussian distribution of
the anisotropies

Non-Gaussianity

Any deviation from normal probability distribution. Different
processes can show different deviations.

local fnl parameter

φ = φL + fNL

h

φ2
L

− < φ2
L

>
i

⇒
∆T
T

= F (φ, fNL).

Third order moments, as for example the bispectrum, are linearly dependant to fnl.
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= F (φ, fNL).

Third order moments, as for example the bispectrum, are linearly dependant to fnl.

Very weak signal!

Method’s efficiency:

in terms of accuracy

CPU time

Aim of this work
The binned bispectrum presented in Bucher et al. 2010 and Planck collaboration 2013, is one of the most efficient.

We want to explore the requirements necessary to achieve this. (Might be useful for other bispectrum
estimators.)

Test utility of artificial intelligence techniques for non-Gaussianity analysis (NN).
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Optimal Estimator

REAL DATA

fNL estimators get more complicated when including the mask and anisotropic noise.

http://map.gsfc.nasa.gov/

The optimal estimator has been proposed by

Babich (2005) and Creminelli et al. (2006)

and successfully computed by Smith et al.

(2009) and Komatsu et al.(2011) for

WMAP-5year and WMAP-7year data. For

larger data set as Planck, other approaches

have been made.
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1

N

X
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High computational demand.
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Binned bispectrum

A reduced bispectrum is defined as:

bl1l2l3 =

Z

Tℓ1Tℓ2Tℓ3dΩ , (3)

where Tℓ(~n) =
P

m aℓmY (~n).
The binned reduced bispectrum is then

babc =
X

ℓ1∈Ia

X

ℓ2∈Ib

X

ℓ3∈Ic

bℓ1ℓ2ℓ3 , (4)

where In are bins in ℓ.
Binned maps can be constructed as: Ta =

X

ℓ∈Ia

Tℓ.

Then babc is constructed from TaTbTc (number of spherical harmonic transformation
drmatically reduced!).

babc =
X

i

4π

N
TaTbTc(i) (5)

(Bucher et al. 2010, MNRAS, 407, 2193)
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Approximated maximum-likelihood estimator (AMLE)

fNL =
X

abc,def

〈babc〉
1C−1

abc,def bobs
def

X

abc,def

〈babc〉
1C−1

abc,def 〈bdef 〉
1

. (6)

Approximated maximum-likelihood estimator with
diagonal covariance matrix (AMLED)

fNL =
X

abc

〈babc〉
1bobs

abc/var(babc)
X

def

(〈bdef 〉
1)2/var(bdef )

(7)

Neural network estimator (NNE)

fNL =
X

abc

wabcbabc + θ . (8)

Those estimators are compared using WMAP-7yr data and realisations with
WMAP-7yr characteristics.
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However, when dealing with real data those estimators are suboptimal due to the
anisotropies given by the mask and the noise. There are several things that one might
try to solve it:

Add a linear term.

remembering that babc =
X

i

4πT (i)aT (i)bT (i)c

Npix
a linear term of the form

bL
abc = babc −

X

i

4π〈TaTb〉Tc − 〈TaTc〉Tb − 〈TbTc〉Ta

Npix
(12)

can be subtracted
Mean subtraction.
In Curto et al. 2009,2010,2011 and Donzelli et al. 2012 the mean value of the
wavelet and needlet coefficients is subtracted. Then:

bMS
abc =

X

i

4π

N
(Ta − T̄a)(Tb − T̄b)(Tc − T̄c) (13)

Inpainting.
Fill the masked region by some simulated signal, specially the point sources and
the galactic mask edges.

bI
abc = babc(from inpainted maps) (14)

Those effects will be tested and all possible combinations.
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Neural networks

nodes

yk =
X

j

wkjhj + θk,

where hj is

hj = tanh(
X

i

wjixi) + θj

yk =
X

j

wkj

0

@tanh(
X

i

wjixi) + θj

1

A + θk

EPI conference 2013, Santander fnl constraints with neural networks 9 / 19



Introduction
local fNL estimators based on the binned bispectrum

Neural networks
Results

Conclusions

NN training

Neural networks

nodes

yk =
X

j

wkjhj + θk,

where hj is

hj = tanh(
X

i

wjixi) + θj

yk =
X

j

wkj

0

@tanh(
X

i

wjixi) + θj

1

A + θk

EPI conference 2013, Santander fnl constraints with neural networks 9 / 19



Introduction
local fNL estimators based on the binned bispectrum

Neural networks
Results

Conclusions

NN training

NN training

Supervised training for a feedforward network

We train the network with a known set of inputs
and outputs, x

t and y
t . We choose an

optimization function (Ex. mse,rmse,χ2,. . . ) . The
optimization function is only dependent of the
network parameters.

Err =
X

t,k

(y
(net),t
k − y

(t)
k )2

minimize this function (using conjugates gradient
methods, gradient descent method, etc.)

We have used a neural network code with Q = αS − χ2 , where S is the entropy
(Gull & Skilling 1999). Following the maximum entropy trajectory to find the

optimal solution. In any case we need to find wlm and θn 7→ yk ∼ yreal
k

.

Then simulations with a given
fNL are generated and the binned
bispectrum components are
computed.

INPUTS 7→ babc

OUTPUTS 7→ fNL

TRAINING 7→ wabc, θ

fNL =
X

abc

wabcbabc + θ . (15)
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Lower bound

Our efficiency goal for a realistic case is:

σ2
fh =

h

fsky

X

ℓ1≤ℓ2≤ℓ3

`

〈Bℓ1ℓ2ℓ3〉
1

´2

∆Cℓ1Cℓ2Cℓ3

i−1
(16)

where ∆ takes values 1, 2 or 6 when all ℓ’s are different, two are equal, or all are the
same and fsky is the fraction of the sky available. (Noise and beam contributions are
added).

σfh ∼ 21

Approximated maximum-likelihood estimator (AMLE)

fNL =
X

abc,def

〈bdef 〉1C−1
def,abc

bobs
abc

X

abc,def

〈babc〉
1
C

−1
abc,def

〈bdef 〉
1

. (17)

Approximated maximum-likelihood estimator with diagonal
covariance matrix (AMLED)

fNL =
X

abc

〈babc〉
1bobs

abc/var(babc)
X

def

(〈bdef 〉
1
)
2
/var(bdef )

(18)

Neural network estimator (NNE)

fNL =
X

abc

wabcb
obs
abc + θ . (19)
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Linear Term

Linear term.

remembering that babc =
X

i

4πT (i)aT (i)bT (i)c

Npix
a linear term of the form

bL
abc = babc −

X

i

4π〈TaTb〉Tc − 〈TaTc〉Tb − 〈TbTc〉Ta

Npix
(20)

can be subtracted

Case INP LT MS Estimator σg < fNL >Gauss (σfh − σg)/σfh(%)

1 No Yes No
AMLED 35.9 -0.3 60
AMLE 24.3 0.1 9.3
NN 23.6 0.6 4.8
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Mean Subtraction

Mean subtraction.

Donzelli et al. 2012 have shown that for needlets and wavelets, subtracting the mean
value of the wavelet or needlet coefficients is almost equivalent than adding the linear
term (and that would be faster to compute). Then the fNL estimators are now
computed using:

bMS
abc =

X

i

4π

N
(Ta − T̄a)(Tb − T̄b)(Tc − T̄c) (21)

similarities with the linear term:

1

N

X

i

(Ta,i − T̄a)(Tb,i − T̄b)(Tc,i − T̄c) =
1

N

X

i

Ta,iTb,iTc,i (22)

−T̄a
1

N

X

i

Tb,iTc,i − T̄b
1

N

X

i

Ta,iTc,i − T̄c
1

N

X

i

Ta,iTbi

+2T̄aT̄bT̄c

Case INP LT MS. Estimator σg < fNL >Gauss (σfh − σg)/σfh(%)

2 No No Yes
AMLED 37.0 1.5 64
AMLE 24.6 -0.4 8.0
NN 23.6 0.4 4.8
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Inpainting

One begins with the map T (~x) and the binary mask M(~x). Then each pixel of the
masked map T ′ = T × M with value zero is substituted by the average of its
immediate neighbours, whether masked or not, using the HEALPix subroutine
neighbours.

Case INP LT MS Estimator σg < fNL >Gauss (σfh − σg)/σfh(%)

3 Yes No No
AMLED 107 3 300
AMLE 32.7 -1 45
NN 29.7 -0.3 32
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Linear Term + Inpainting

To improve the results we now use inpainted maps and subtract the linear term. And
the same for the mean subtraction.

Case INP LT MS Estimator σg < fNL >Gauss (σfh − σg)/σfh(%)

4 Yes Yes No
AMLED 22.7 0.7 0.9
AMLE 23.3 0.7 3.5
NN 22.4 0.7 0.4

5 Yes No Yes
AMLED 31.5 0.7 40
AMLE 24.0 0.7 6.7
NN 23.1 0.5 2.7

Looks better but still not 21! (lower bound, Komatsu et al. 2011)
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Final results

With accurate realisations (Elsner and Wandelt 2009
http://planck.mpa-garching.mpg.de/cmb/fnl-simulations/) the lower bound is
reached.
(Linear term subtracted and inpainting done to the maps).

Estimator σfh σg < fNL >Gauss fmap
NL ∆fNL

AMLED
21.3

21.7 -0.2 33.4 3±2
AMLE 22.4 -0.1 39.8 3±2
NN 21.4 0.5 44.2 4±2

Table: Results for inpainted Gaussian realizations. Model estimated and neural network trained
using Elsner & Wandelt simulations (set 2). The columns from left to right are: the estimator

used, the Fisher σ computed analytically, the dispersion and mean value of f̂NL for 1,000 Gaussian
simulations. Followed by the fNL value found for WMAP-7yr data and the contribution expected
by the unresolved point sources (∆fNL).
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Three estimators comparison

The computational demand of the estimators is directly related to the number of
realisations used.

AMLE 7→ realisations to estimate covariance matrix.
AMLED 7→ realisations to estimate var(babc).
NNE 7→ realisations required to train the network.

0 5,000 10,000 15,000 20,000 25,000
20

25

30

35

σ
(f

n
l)

number of simulations

 

 
AMLE
NNE
AMLED

0 0.5 1 1.5 2 2.5

x 10
4

−5

−4

−3

−2

−1

0

1

2

3

number of simulations

bi
as

 

 

AMLE
NNE
AMLED

Figure: Comparison of the efficiency (top) and bias (bottom) of the three estimators with respect to the number
of simulations used to construct the estimator. For reference, the optimal values for the dispersion and bias
(dashed black line) are also shown.
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Conclusions

All three estimators are close to optimal if linear term is subtracted and
inpainting performed.

The effect of the linear term is small if the full covariance matrix is taken into
account or NN are used.

Mean subtraction almost equivalent to the linear term subtraction only for AMLE
and NN.

The effect of the inpainting is small if the full covariance matrix is taken into
account or NN are used.

The NN estimator simplifies the analysis with respect to the AMLE.

AMLED is very effective and fast when these considerations are taken into
account.

Neural networks can be useful to avoid large complicated steps (matrix inversions,
model estimation).
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