

http://www.iac.es/project/cmb/quijote

QUIJOTE: a CMB polarization experiment

José Alberto Rubiño-Martín

Instituto de Física de Cantabria

UNIVERSITY OF CAMBRIDGE

Exploring the Physics of Inflation

CMB Power spectra - Theory

What would a detection of GW tell us?

- It would provide strong evidence that inflation happened!
- The amplitude of the power spectrum is a (model-independent) measurement of the energy scale of inflation.

$$P_{tensor} = \frac{8}{m_{Pl}^2} \left(\frac{H}{2\pi}\right)^2 \propto E_{inf}^4$$

• Defining the tensor-to-scalar ratio (r) at a certain scale k_0 (e.g. at 0.001 Mpc⁻¹), we have

$$r = \frac{P_{tensor}(k_0)}{P_{scalar}(k_0)} = 0.008 \left(\frac{E_{inf}}{10^{16} GeV}\right)^4$$

• Values of **r** of the order of 0.01 or larger would imply that inflation occurred at the GUT scale.

• These scales are 12 orders of magnitude larger than those achievable at LHC!

Primordial gravitational waves and Bmodes

> r=0.1 corresponds to an energy scale of inflation around $2x10^{16}$ GeV.

Observability of B-modes

 Signals are extremely small ⇒ large number of receivers with large bandwidths are required.

• Accurate **control of systematics** (cross-pol, spillover,...) is mandatory.

 Foregrounds. B-mode signal is subdominant over Galactic foregrounds

- Free-free, low-freq, not polarized
- Synchrotron, low-freq, pol ~10%
- Thermal dust, high-freq, pol ~10%
- Anomalous emission, 20-60 GHz, pol ~3%?
- Point sources, low-freq, pol ~5%

⁽Bock et al. 2006, arXiv:0604101)

CMB polarization: observational status

Several E-mode
detections: DASI, CBI,
CAPMAP, Boomerang,
WMAP, QUAD, BICEP,
QUIET, etc.

• WMAP7 gives r<0.93 at 95% using TE/EE/BB, and r<2.1 at 95% with BB alone.

•WMAP7+BAO+SN gives r<0.2 (Komatsu et al. 2010).

• BICEP: r<0.72 at 95% with BB only (Chiang et al. 2010).

• QUIET: $r=0.35^{+1.06}_{-0.87}$ with BB only (Bischoff et al. 2010)

QUIJOTE CMB experiment

(Q-U-I JOint TEnerife Cosmic Microwave Background Experiment)

The QUIJOTE CMB consortium

The University of Manchester

Instituto de Astrofísica de Canarias

R. Rebolo (PI), J.A. Rubiño-Martín (PS), M. Aguiar, R. Génova-Santos, F. Gómez-Reñasco, C. Gutiérrez, R. Hoyland (InstS), C.H. López-Caraballo, A. Peláez, A. Pérez (PM), V. Sánchez, A. Vega, T. Viera, R. Vignaga

Instituto de Física de Cantabria

E. Martínez-González, B. Barreiro, F.J. Casas, J.M. Diego, R. Fernández-Cobos, D. Herranz, M. López-Caniego, D. Ortiz, P. Vielva

Departamento Ingeniería de Comunicaciones

E. Artal, B. Aja, J. Cagigas, J.L. Cano, L. de la Fuente, A. Mediavilla, J.P. Pascual, J.V. Terán, E. Villa

University of Manchester

L. Piccirillo, R. Battye, E. Blackhurst, M. Brown, R.D. Davies, R.J. Davis, C. Dickinson, K. Grainge, S. Harper, B. Maffei, M. McCulloch, S. Melhuish, G. Pisano, R.A. Watson

University of Cambridge

M.P. Hobson, A. Challinor, A.N. Lasenby, N. Razhavi, R.D.E. Saunders, P.F. Scott, D. Titterington

IDOM

G. Murga, C. Gómez, A.Gómez, J. Ariño, R. Sanquirce, J.Pan, A. Vizcargüenaga

The QUIJOTE-CMB Experiment: Goals

- <u>Main science driver</u>: to constrain (or to detect) gravitational B-modes if they have an amplitude of r=0.05.
- Complement Planck at low frequencies. <u>In</u> <u>combination with Planck data</u>, push the upper limits below that value.
- <u>Measure polarized foregrounds (synchrotron)</u> with high sensitivity to correct them in future space missions aiming to reach r=0.001.

QUIJOTE: Project baseline

- Site: Teide Observatory
- **Frequencies**: 11, 13, 17, 19, 30 and 42 GHz.
- Angular resolution: 0.92° to 0.26°
- Sky coverage: $20,000 \text{ deg}^2$.

Telescopes and instruments: two phases, fully funded.

> Phase I.

- \succ First telescope (QT1). In operation.
- > Multi-Frequency Instrument (MFI) with 4 polarimeters at 10-20 GHz. In operation.
- Second Instrument (TGI) with 31 polarimeters @ 30 GHz. Starting early 2014.
- > Polarised source subtractor facility at 30GHz. In commissiong.

Phase II.

- Second telescope (QT2). Under construction, starting operations early 2014.
 Third instrument (FGI) at 42 GHz (40 polarimeters). Early 2015.
- Technology: Coherent detectors. <u>Polarization detection</u>: modulation.
- <u>**Observing strategy**</u>: Deep observations in selected areas using <u>raster</u> <u>scans</u>, plus <u>wide survey using "nominal mode</u>".
- Scientific operation plan: 2012-2018.

Consolider-Ingenio Program 2010: "Exploring the physics of inflation (EPI)"

- * Five-year grant (2011-2016).
- Nodes: IFCA, IAC, DICOM, UGR, UPV, Univ. of Manchester, Univ. of Cambridge, Chalmers.
- Technical contributions:
 - Second QUIJOTE telescope.
 - ✤ QUIJOTE 42GHz experiment.
 - Development of technology to build 42GHz FEMs.
 - Pathfinder for a large-format interferometer.

Exploring the Physics of Inflation

Santander, Spain • June 24-27, 2013

QUIJOTE CMB Experiment

(Q-U-I JOint TEnerife Cosmic Microwave Background Experiment)

PHASE II.

- Second QUIJOTE telescope
- Third instrument (42GHz).

- PHASE I.
- Enclosure and First QUIJOTE telescope
- Multi-Frequency:10-30GHz
- 30GHz instrument
- Source subtractor facility @30GHz

QUIJOTE. Platform

QUIJOTE. Telescope

Alto-azimutal mount

Maximum rotation speed around AZ axis: 0.25 Hz.

Maximum zenith angle: 60°

Cross-Dragonian design.

Aperture: 2.25 m (primary) and 1.9 m (secondary)

First QUIJOTE Telescope (QT1)

Installed at the Teide Observatory in May 3rd, 2012.

QUIJOTE first instrument: Multi-Frequency Instrument

- 4 conical corrugated horns (2 at 10-14 GHz and 2 at 16-20 GHz)
- Polar modulator spinning at speeds up to 40 Hz
- Wide-band cryogenic Ortho-Mode-Transducer (OMT)
- MMIC 6-20 GHz Low Noise Amplifiers. Gain: 30dB
- Noise temperature: ~7-10 K (10-14 GHz), ~10-20 K (16-20 GHz)

Polar Modulators

Spinning polar modulators

Horns

LNA

QUIJOTE MFI. Final integration

In operation since Nov.2012.

MFI polarimeter configuration

- FEM: partially-cooled feed-horn, polar modulator, OMT and LNAs
- **BEM**: phase adjuster, further amplification, band pass filter and correlation.
- Output: two channels (x) and (y) measuring Q (un-correlated), two channels (x+y) and (x-y) measuring U (correlated)

- Continuous spinning of the polar modulators allows independent measurement of I, Q and U for each channel, while switching out the 1/f noise.
- Each of the four outputs are divided into a lower frequency and an upper frequency band.

MFI polarimeter: polarization detection

$$C_{1} = D_{1}^{int} = \frac{1}{2} [T + Q \sin(4\theta) - U \cos(4\theta)]$$

$$C_{2} = D_{2}^{int} = \frac{1}{2} [T - Q \sin(4\theta) + U \cos(4\theta)]$$

$$C_{3} = D_{1}^{ext} = \frac{1}{2} [T + Q \cos(4\theta) + U \sin(4\theta)]$$

$$C_{4} = D_{2}^{ext} = \frac{1}{2} [T - Q \cos(4\theta) - U \sin(4\theta)]$$

Mueller matrix analysis of the MFI:

(Pessimistic values)

$$M_{d4pos} = \begin{pmatrix} 0.953 & -4.98 \times 10^{-4} & -1.36 \times 10^{-3} & 1.93 \times 10^{-3} \\ 1.59 \times 10^{-5} & 0.951 & 1.72 \times 10^{-2} & -1.17 \times 10^{-2} \\ -1.11 \times 10^{-3} & -1.71 \times 10^{-2} & 0.951 & 8.31 \times 10^{-3} \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

I Q U V

A QUIJOTE Source-Subtractor facility at 30GHz

A dedicated instrument at 30 GHz to measure radiosources (an upgraded version of the VSA subtractor converted to a polarimeter).
 Uses dielectrically embedded mesh-HWP designed and produced at the University of Manchester.

Twofold subtraction strategy: - NVSS-GB6 extrapolation. ~300 sources with Stokes-I flux > 300 mJy at 30 GHz. Flux sensitivity per source ~2-3 mJy in ~100 days.

- Identify sources in the low-frequency channels by MH wavelet filters (López-Caniego et al. 2009).

• Interferometer of two 3.7m antennae with a 9m baseline

- Primary beam: 9'
- Synthesized beam: 4'
- Dec. range: -5°<δ<+60°

QUIJOTE CMB Experiment - Phase I and II. Sensitivities

		м	TOI	FOI		
		111	101	гGI		
Frequency (GHz)	11	13	17	19	30	40
Bandwidth (GHz)	2	2	2	2	8	10
Number of horns	2		2		31	40
Channels per horn	2	2	2	2	4	4
Beam FWHM (deg)	0.92	0.92	0.60	0.60	0.37	0.28
T _{sys} (K)	25	25	25	25	35	45
NEP per channel (µK s¹/²)	456	370	663	1019	557	632
Sensitivity per channel (Jy s ^{1/2})	0.49	0.55	0.73	1.40	0.66	0.76

- Measured sensitivities for MFI, and nominal sensitivities for TGI and FGI.
- Temperature sensitivity per beam, given by

$$\Delta Q = \Delta U = \sqrt{2} \frac{T_{sys}}{\sqrt{\Delta v \times t_{int} \times N_{chan}}}$$

Thirty-GHz Instrument (TGI)

- 31 polarimeters at 30 GHz (4 channels each).
- Nominal sensitivity: 50 µK s^{1/2}

- MFI not appropriate for long-term operations required for TGI.
- New design: We have modified the receiver configuration by replacing the rotating polar modulator with a fixed polarizer
- It includes a fixed polarizer and 90 and 180 phase switches to generate four polarisation states to minimize the different systematics in the receiver.

Science with QUIJOTE first instrument (MFI)

Two large surveys in polarization:

• Wide Galactic survey. It will cover 20,000 deg², and will be finished after 3 months of observations with each instrument (half-way through with the MFI). Expected sensitivities:

- -~14 $\mu K/(beam$ 1°) with the MFI @ 11, 13, 17 and 19 GHz, in both Q and U
- $\bullet \leq 3~\mu K/(beam~1^{\circ})$ with the TGI @ 30 GHz and with the FGI @ 40 GHz
- Deep cosmological survey. It will cover around 3,000 deg². Expected sensitivities after 1 year:
 - \approx 5 μ K/(beam 1°) with the MFI @ 11, 13, 17 and 19 GHz
 - $\bullet \leq 1~\mu K/(beam~1^{\circ})$ with the TGI @ 30 GHz and with the FGI @ 40 GHz

Science with QUIJOTE first instrument (MFI)

These maps will provide valuable information about the **polarization** properties of:

> <u>Synchrotron emission</u>: it should dominate the emission at our frequencies

> <u>Anomalous microwave emission</u> (spinning dust? little known about its polarization).

➢ <u>Radio-sources</u>: low contribution at degree scales, but relevant for B-modes science.

✤ Maps used to clean the 30 GHz and 40 GHz maps of the 2nd and 3rd QUIJOTE instruments (TGI and FGI).

Excellent complement to Planck at low frequencies.

Science with QUIJOTE second (TGI) and third (FGI) instruments

Left: Example of the QUIJOTE-CMB scientific goal after the Phase I. It is shown the case for <u>1 year (effective)</u> observing time, and a sky coverage of 3, 000 deg2. The red line corresponds to the primordial B-mode contribution in the case of r = 0.1.

Right: QUIJOTE-CMB Phase II. Here we consider <u>3 years of effective</u> <u>operations</u> with the TGI, and that during the last 2 years, the FGI will be also operative. The red line now corresponds to r = 0.05.

Commissioning phase (November 2012 – March 2013)

- Calibrators (>100 hrs observing CRAB, CASS-A, Moon, Jupiter).
- Polarization tests.
- Local interference map (~10 hrs)
- Tsys calibration (~10hrs).
- Science demonstration cases:
 - Cygnus loop (~1hr)
 - Fan region (> 135 hrs)
 - Perseus molecular cloud (>170hrs)

Science phase (April 2013 - now)

- Wide survey (almost completed)
- Daily calibrators.
- Fan region.

Observing efficiency ~ 85% (including bad weather & technical problems).

Observing modes:

- 1. Nominal: fast spinning at fixed elevation. Earth rotation provides daily sky coverage of several thousand sq degrees. (\rightarrow Wide survey)
- 1. Raster and Tracking observations are also possible (→Cosmological fields, calibrators, galactic fields).

QUIJOTE EXPERIMENT QT1 MFI

observing modes

OBSERVATORIO DEL TEIDE. MARZO 2013

Technical First Light: the Moon seen through clouds

Nov 6th, 2012

1 0 -1 -2

2

Horn	FWHM AZ (deg)	FWHM EL (deg)		
1 - 11 GHz	0.89	0.88		
1 - 13 GHz	0.89	0.89		
2 - 19 GHz	0.66	0.67		
3 - 11 GHz	0.81	0.85		
3 - 13 GHz	0.82	0.88		
4 - 19 GHz	0.63	0.66		

2 1 0 -1 -2

Focal Plane - 2.8 4 · 2 - 2.6 0 -- 2.4 -2 - 2.2 $^{-4}$ - 2.0 -2 0 AZ offset 2 Moon

EL offset

Focal plane and beams

• Geo-stationary satellites can be used in the low frequency channels.

• First side lobes below -30dB.

MFI - Noise properties

 Noise power spectrum is measured using long observations of blanck fields.

 \circ There is a 2Hz signal + harmonics which suggests the cooler frequency. It is also visible a 50Hz signal.

The anti-aliasing filter cuts off at >400Hz.

 \circ The 1/f noise knee frequency (in intensity) is generally < 10-20Hz.

• When subtracting correlated channels instantaneously, the knee frequency is effectively reduced.

LOCAL interference maps – Radio contamination

• Uses nominal mode, and it represents local coordinates centred at zenith (N is bottom, E is left). A full map is produced in 3hrs, covering from EL=30° to 90° with steps of 0.2°, and telescope velocity of 4deg/s.

• This example was taken on Dec 27th 2012, during the morning (the Sun is visible).

• Stripe of geo-stationary satellites at declination 0° is seen in the 10-12GHz band.

Photometric calibrators

CRAB (TauA)

Cass-A

Typical integration on source: 10 s

Crab P=7%

Cass A P=0.7%

Cass-A - null polarization calibrator to adjust the gain mismatch between pairs of channels

Polarization calibrators: CRAB

Crab observations on 15/11/2012:

Modulators fixed at 0°

 $<Q/I> = 0.0579 \pm 0.002$

Polarization calibrators: CRAB

Crab observations on 15/11/2012:

Modulators fixed at 22.5°

 $<U/I> = -0.0360\pm0.004$

 $<P/I> = 6.8 \pm 0.8$ % at 11 GHz

(Consistent with WMAP 23 GHz, 7.08±0.25%)

Moon model

• Dielectric sphere of refractive index n_i=1.8 at uniform temperature (see Davies & Gardner 1966; Bischoff 2010).

Moon Maps at 17 GHz of Stokes I, Q and U (integration time of 1 min on source)

Fan maps

QUIJOTE Observations of 3C 58

Perseus molecular complex

★ Large observation programme (~150 hours, from December 2012, still ongoing), on an area covering ~200 deg² around the Perseus molecular complex. One of the brightest AME regions on the sky (Watson et al. 2005; Planck collaboration 2011)

★ Also covering the California nebula (HII region - null polarization control region)

Final integration time of ~ 2500 s/beam, yielding a sensitivity of ~ 40 mJy/beam in Q and U

California HII region

Perseus G160.26-18.62

Polarization of the Anomalous Microwave Emission

 \star Forecasts of the level of contamination for B-mode experiments

- ★ Probing the electric and magnetic dipole emission models:
- Electric and dipole emissions present different polarization spectra

• Magnetic dipole emission, in the case of singledomain grains (no Fe inclusions) is expected to be strongly polarized (up to ~30% for v> 40 GHz; Draine & Lazarian 1999). However, magnetic inclusions produce lower polarizations (<10% at v ~ 30 GHz; Draine & Hensley 2012)

• Electric dipole emission (spinning dust) is weakly polarized (under ~2% above 20 GHz; Lazarian & Draine 2000)

Draine & Hensley 2012

Current status of AME polarization measurements

Name	Experiment	Resolution	Π [%]			Reference			
			$9-11 \mathrm{GHz}$	$22~\mathrm{GHz}$	$30-33~\mathrm{GHz}$	$44 \mathrm{GHz}$			
Galactic AME regions									
Perseus	COSMOSOMAS	1°	$3.4^{+1.5}_{-1.9}$				Battistelli et al. (2006)		
"	WMAP7	1°		< 1.01	< 1.79	< 2.69	López-Caraballo et al. (2011)		
"	WMAP7	1°		< 1.4	< 1.9	< 4.7	Dickinson et al. (2011)		
ρ -Ophiuchi	CBI	$\sim 9'$			< 3.2		Casassus et al. (2008)		
"	WMAP7	1°		< 1.7	< 1.6	< 2.6	Dickinson et al. (2011)		
LDN1622	GBT	$\sim 6'$	< 2.7				Mason et al. (2009)		
"	WMAP7	1°		< 2.6	< 4.8	< 8.3	Rubiño-Martín et al. (2012)		
Pleiades	WMAP7	1°		< 12.2	< 32.0	< 95.8	Rubiño-Martín et al. (2012)		
LPH96	CBI	$\sim 9'$			< 10		Dickinson et al. (2006)		
"	WMAP7	1°		< 1.3	< 2.5	< 7.4	Rubiño-Martín et al. (2012)		
Helix	CBI	$\sim 9'$			< 8		Casassus et al. (2007)		
Diffuse Galactic AME									
Full-Sky	WMAP3	1°		< 1	< 1	< 1	Kogut et al. (2003)		
Full-Sky	WMAP5	1°		< 5			Macellari et al. (2011)		

Perseus: Polarization upper limits

ν (GHz)	I (Jy)	$Q~({ m Jy})$	U (Jy)	P (Jy)	$P_{ m db}~(m Jy)$	П (%)	$\Pi_{ m db}$ (%)
11	11.4 ± 1.1	0.07 ± 0.35	0.30 ± 0.27	0.30 ± 0.27	< 0.39	2.66 ± 2.39	< 3.385
13	14.4 ± 1.1	0.12 ± 0.29	0.22 ± 0.33	0.26 ± 0.32	< 0.37	1.78 ± 2.24	< 2.557
17	18.7 ± 1.6	-0.25 ± 0.40	0.28 ± 0.39	0.38 ± 0.40	< 0.50	2.02 ± 2.12	< 2.664
19	22.9 ± 2.4	-0.30 ± 0.70	0.35 ± 0.61	0.46 ± 0.65	< 0.74	2.00 ± 2.83	< 3.260

WIDESURVEY. Horn 3 (RA-DEC)

Cygnux complex

QUIJOTE Northern Hermisphere Survey

WIDESURVEY - Horn 3 - Channel 1

Observations conducted in May 2013

Galactic plane (centered at I=80°)

 $\rm MFI{-}11GHz$

MFI-13GHz

Galactic plane (centred at I=7°)

• Map of 27° x 11° a side.

• QUIJOTE maps are extracted from one day nominal map at EL=30 deg (taken on June 21st).

Three (non-overlapping) areas of ~1200 square degrees each, with low galactic emission.

Status of observations of cosmological fields

QUIJOTE CMB Experiment: Schedule

PHASE II.

- Second QUIJOTE telescope
- Third instrument (42GHz).
- Enclosure and First QUIJOTE telescope
- Multi-Frequency:10-30GHz
- 30GHz instrument

PHASE I

Source subtractor facility @30GHz

2012-2013 2014 2015

Summary

QUIJOTE: a new CMB Polarization experiment is currently in scientific operation. The first telescope and instrument are performing well. Intensity and polarization maps are produced at four frequencies. The second telescope and instrument are under construction. Our long ride to search for Bmodes has just started.