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Outline

• Primordial non-Gaussianity (PNG) & the large-scale structure (LSS)

• Data: Galaxy clustering and correlation with CMB (ISW effect)

• Systematics analysis

• Results on PNG

• Extension to galaxy clusters

• Outlook & conclusions
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Inflation and dark energy Open questions
at early and late times

[WMAP team]
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The origin of cosmic 
perturbations

• Primordial quantum fluctuations

• Stretched by inflation

• Horizon exit at t*(k)

• Super-horizon evolution

• Seeds for radiation (CMB) and 
matter (LSS) structure

Observing the present 
Universe, we can learn of its 

beginning!
4

[Credit: WMAP]



-1

-10

-10
2

-10
3

-10
4

-10
5

5 10 100

fNL

g
N

L

Multi-curvaton (case I)

Mixed curvaton (R=0.01)Multi-brid (quadratic)

Inhom. end of thermal inf.

 1

 10

10
2

10
3

10
4

10
5

(pure) Curvaton 

(pure) Curvaton (w/ self-int. n=8) 

Multi-c
urvaton (case 2)

Inhom. end of hybrid inf.

(pure) Modulated reheating

Modulated trapping

Multi-b
rid (lin

ear)

Mixed Modulated reh. (R=0.01)
Modulated curvaton (Region 2)

Figure 2: fNL–gNL diagram. The relation between gNL and fNL is plotted for models given
in Table 1.
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Constraining          
the early universe

• (Too) many inflation models available:

• single / many field
• slow or fast decay, what kinetic terms?
• cyclic/ekpyrotic models...

• Simplest single-field models predict:

1.near-flatness ✓
2.nearly scale-invariant power spectrum ✓ 
3.curvature perturbations only ~ [Valiviita & 

TG 09] 
4.nearly Gaussian distribution ?

• Other models: parametrisation:
Φ: primordial potential; φ Gaussian.   
Amount of departure from Gauss: fNL , gNL
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[Suyama et al. 10]

Φ = φ + fNL φ2 + gNL φ3

Now confirmed by Planck 13

Now confirmed by Planck 13



[Liguori et al. 10]

Measuring non-Gaussianity
• Many possible types! Different configurations: 

kernel W. Φ: primordial potential; φ Gaussian.

• Amount of NG: fNL measurable from CMB 
Bispectrum = ‹ΘΘΘ› 

• local case (W=1): WMAP9: -3 < fNL < 77 (95%) 
[Hinshaw et al. 12]

• Planck: fNL = 2.7 ± 5.8  (1σ) !

• Also from LSS Bispectrum = ‹δδδ›

• hard to distinguish from late-time NG

Additional LSS technique: 
scale-dependent bias

[Dalal et al. 07, Afshordi et al. 08, Slosar et al. 08, TG & Porciani 09]
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Primordial Non-Gaussianity and the LSS

• Dark matter perturbations δm  > dark 
matter haloes δh  > galaxies δg

• halo bias,      δh = bh δm

• galaxy bias,  δg = bg δm

• With Primordial Non-Gaussianity:      
scale-dependent, non-local b [Dalal et al 
07, +]

• Measure: Spectra ‹gal-gal› ∼ b2 and 
‹gal-CMB› ∼ b → measure bias → 
constraints on PNG!                     
[Slosar et al 08, Xia et al 10, 11, Ross et al. 12, TG et 
al. 13]
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b(k, fNL, gNL) ≃ bGauss + βf fNL / k2 + βg gNL / k2

[Millennium run, Springel et al. 09]

[TG & Porciani 09]



Physical sense of scale-dependent bias

• Halo collapse above critical 
overdensity

• Add short modes: One 
realisation: one halo forms

• Multiple realisations with rms: 
halos more likely to form near 
large-scale overdensities: bias

• With non-Gaussianity:
more small-scale fluctuations 
where large-scale overdensity
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Non5Gaussianity:'Large'Scale'Bias'

Consider'the'
density'field'in'1D.'
A'given'region'is'
collapsed'(i.e.'forms'
a'halo)'if'the'
density'is'larger'
than'a'cri%cal'value.'''

Cri%cal'density'

Long'
Wavelength'
mode'

Critical collapse density

Long 
wavelength 

mode

Non5Gaussianity:'Large'Scale'Bias'

Add'in'short'
wavelength'modes.'
For'this'one'
realiza%on,'the'
second'peak'has'
collapsed'into'a'
halo.'

Halo forms!

Long+short 
wavelength 

modes

Non5Gaussianity:'Large'Scale'Bias'

More'generally,'
short'wavelength'
modes'drawn'from'
a'distribu%on'with'
given'rms'(red'
curves)'

Halos'more'likely'to'
form'in'region'of'
large'scale'
overdensity'='bias'

Rms. of Short 
wavelength 

modes

!s (x)! k
2"s (1+ 2 fNL"l )

Non5Gaussianity:'Large'Scale'Bias'

Change'with'
primordial'NG:'
more'small5scale'
fluctua%ons'in'
region'of'large'scale'
over5density'!'
more'bias'on'large'
scale'

δs + δm ≈ δs (1 + 2fNL φl)

More bias on large scales! [Credit: S. Dodelson]



What does “galaxy clustering” mean?"

P (k) = ��k(k)2�
⇥(d) = ��(r)�(r + d)�

Clustering strength = number of galaxy pairs"
" "beyond random"

2dFGRS"

[Credit: W. Percival]

Galaxy & CMB Clustering: Correlation functions
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• Fluctuations in CMB temperature, 
galaxy density: Θ ≡ δT/T  δ ≡ δρ/ρ

w
w



CMB anisotropies

• Primary: at last scattering

• from T, δ, v fluctuations

• Secondary:

• global & local 
reionisation 
(suppression, new 
Doppler, OV, SZ 
effects)

• gravity (lensing, RS, 
ISW effect)
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The integrated Sachs-Wolfe effect [Sachs & Wolfe 67]

• Secondary effect on the CMB:

• No effect in matter domination as 

• Early ISW in radiation era

• Late ISW if dark energy (or curvature) 
dominates

• Probe of Dark Energy, but small in TT

• ISW: highly correlated with LSS 
through the gravitational potential Φ 11

ISW signal: Detectable cross-
correlating <CMB x LSS>

[Crittenden & Turok 95]



Combined LSS+ISW data, 
updated [TG et al. 08, 12, 13]

• Data maps, pixellated 

• density: 6 galaxy catalogues:

• infra-red 2MASS

• optical SDSS DR8: (main galaxies, 
luminous red LRG, DR6 quasars)

• radio NVSS

• X-ray HEAO

• CMB temperature: WMAP7

• Masks

• survey geometry 

• (galactic) foregrounds - extinction

SDSS DR6, 7, 8 + extinction mask

12



Measured ⟨Tg⟩ 
correlations
• Non-zero only 

with dark energy

• Covariance: 
Monte Carlos

• ~ agrees with 
LCDM & older 
data

• Total S/N = 4.4 σ 
(± 0.4) (single 
amplitude fitting)

Independent 
evidence for Dark 

Energy at >4σ
13

[TG et al. 12, MNRAS]

WISE? [Goto et al 12] MegaZ vs CMASS



LRG systematics       

• Thomas et al. 10 MegaZ vs Ross et al. 11 
SDSS DR8 photometric CMASS

• Similar redshift range, CMASS South coverage 

• CMASS: correction for stellar systematics
• Fewer galaxies observed where lots of 

stars!
• Many (15%) with BOSS spectra

• ACF: MegaZ show more excess power on 
large scales --> stars or primordial?

• CCF: CMASS lower, in agreement with LCDM

• If no star correction, same area: higher A/CCF

⟨gal-gal⟩

⟨gal-CMB⟩

14 ACF at large scales: difficult

6

FIG. 2. Auto-correlation functions and cross-correlations
with WMAP (top and bottom panels respectively) for the
LRG data sets. The 1-� error bars are derived from Monte
Carlos and are highly correlated; the data points have been
slightly displaced in # for clarity. Dark and light blue data
show the CMASS and MegaZ LRGs, and the relative theoret-
ical expectations from the WMAP7 best-fit cosmology (with-
out PNG) and constant bias of 2.1 and 1.7 are drawn in dark
and light green (ACFs negative at # > 5 deg). The red lines
show the measured correlation functions for the CMASS data
when the DR7 footprint mask is applied, while for the ma-
genta line we have also removed the systematic correction for
the e↵ect of faint stars [49]. A part of the di↵erences between
the LRG samples can be accounted for by these two e↵ects.

not be the case, as the NGC of the DR8 data gives results
which are in better agreement with the MegaZ catalog,
but the SGC shows little or negative cross-correlation sig-
nal, and thus when added to the NGC data, lowers the
overall CCF. It is to be stressed however that, given the
relatively small coverage of DR8 in the SGC (1,300 deg2),

FIG. 3. North-South divide in the CMASS cross-correlation
data. The results for the South galactic cap are contrary
to the expected ISW signal, but the cosmic variance for this
small area is large and it is potentially more subject to ex-
tinction systematics.

we should be wary of over-interpreting the results as the
cosmic variance error on the ISW measurement is large.
The di↵erence between the NGC and the full DR8 data is
more significant, but well within the expected statistical
fluctuations given the size of the highly-correlated error
bars in Fig. 3.

Stellar Correction We have also checked whether
the new correction for the systematic e↵ect of faint stars
introduced by Ref. [49] can better explain the di↵erence
between the two data sets. We can see from the magenta
line in Fig. 2 that indeed, if this correction is not applied
to the CMASS data, the resulting CCF becomes even
higher, close to the MegaZ result. However, even this
e↵ect is not enough to fully reproduce the earlier result
on all angular scales.

Frequency Dependence An important property of
the ISW signal is that it is expected to be independent
of CMB frequency, making any frequency dependence an
indication of possible systematics. To quantify the level
of contamination of the two LRG catalogs, we investi-
gated in detail the frequency dependences of their CCFs,
as shown in Fig. 4. Here we can see that the MegaZ
result is less stable, while the CCF from the CMASS
dataset is remarkably constant for all WMAP frequency
bands, including the K and Ka WMAP bands which are
most a↵ected by residual galactic emission. This robust-
ness, unmatched in any of the other galaxy catalogs from
G12, is fully consistent with the ISW interpretation of



LRG systematics

• Frequency independence: 
• Very stable CCF, with         

all WMAP bands!
• Evidence for superior quality 

of CMASS data
• Stellar contamination 

negligible

Use these LRGs! 
Now suitable for fNL 

analysis. 

15
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FIG. 4. Frequency dependence of the CCFs, for the MegaZ
and CMASS data. We can see that the latter data are more
stable across the whole frequency range.

the observed cross-correlation signal and appears to con-
firm that the stellar contamination in the CMASS data is
negligible. From this test, we conclude that the CMASS
catalog is the most robust data set available for our pur-
poses.

Extinction As already discussed in G08 and G12,
dust extinction can be a major source of systematic un-
certainty in ISW measurements. This is due to structure
from our Galaxy altering the large-scale distribution of
galaxies (due to reddening), which then introduces spu-
rious correlations with the CMB, which may also have
residual galactic emission. For this reason, we have care-
fully checked the e↵ect of extinction on the measured
CCF.

Extinction can be corrected by excluding the most
a↵ected regions from the analysis. In Ref. [49], areas
with a reddening Ar > 0.20 magnitudes were excluded,
while our standard cut in G12 was marginally stricter,
Ar > 0.18 and we have applied this in the present analy-
sis. Fig. 5 shows how the CCFs vary when lowering the
amount of reddening which is tolerated. When this cut is
made stricter, the measured signal increases both for the
full DR8 and NGC-only areas. We confirmed that the
average extinction is higher in the SGC: we found that
the average over our area, calculated before applying the
extinction cut itself, is Ār = 0.12 in the whole footprint,
which reduces to Ār = 0.10 in the NGC and increases to
Ār = 0.18 in the SGC.

FIG. 5. Extinction dependence of the CCFs for the CMASS
LRGs. The top panel shows the result for the whole surveyed
area, while the middle and bottom panels present results from
the NGC and SGC only respectively. The black lines refers
to our baseline cut at Ar < 0.18. The greater variation in the
SGC area reflects both its smaller area and the higher average
reddening in this region.

3. Conclusion

From the analyses performed in this section, we con-
clude that the CMASS data set is the most robust avail-
able for large-scale structure and cross-correlation mea-
surements, as it appears to have low stellar contamina-
tion [49]. We also observe that the lower CCF from the
CMASS data is partly due to a lower CCF in the SGC
portion of the DR8 data, potentially connected to high
extinction e↵ects in this region of the SGC sky.

⟨gal-CMB⟩



NVSS systematics
• Known problem: number density 

changes in dec & smaller r.a. effect 

• Large effects on ACF. Corrections:

• ‘Striping’ in dec bands and rescaling 
n density [Boughn &Crittenden01, Smith 
et al 08, TG et al. 08, 12]

• Cutting Flux < 10 mJy [Blake et al. 04, 
Xia et al. 10, 11]

• Give infinite variance to m = 0 modes 
[Smith et al. 07] - best but difficult in 
real space

• Arbitrary, results vary! 

• Discard this auto-correlation as well?

16
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C. NVSS Systematics

The NRAO VLA Sky Survey (NVSS) [82] produced a
catalog of radio-galaxies covering the full sky at declina-
tions � > �40 deg. The clustering properties of these
sources have been measured by several authors [83–86],
who found excess power on the largest scales compared
with the ⇤CDM predictions and the analyses of other
data sets. Its combination of large sky coverage and red-
shift depth makes the NVSS well-suited for the measure-
ment of ISW cross-correlations and this has been one of
the most studied data sets in this context [87–94]. Fur-
thermore, these data have been used for studying other
aspects of cosmology, such as to detect CMB lensing [95]
and to constrain inhomogeneous models [96].
Unfortunately this catalog is a↵ected by some well-

known issues. There is a large uncertainty in the redshift
distribution of the sources, which can make its cosmolog-
ical interpretation ambiguous. For many applications,
this is not a serious issue; for example, it was shown in
G12 that di↵erent assumptions for the distributions do
not significantly a↵ect the ISW measurements, given the
recovered size of the errors.
More worryingly, the sample contains clear variations

in the density of sources with declination that are sig-
nificantly greater than those expected for a statistically
isotropic universe [83, 87]. In particular, fewer sources
are detected at � < �15 deg, as can be seen in the upper
panel of Fig. 6. In addition, we have found a similar al-
beit smaller issue in right ascension: the number density
has a roughly linear decrease, reaching a minimum at r.a.
> 250 deg; this can be seen in the lower panel of Fig. 6.
The main e↵ect of such systematics, and of any long-

wavelength noise in the data, will be to add spurious
signal on the large-scale power spectrum (or ACF). In-
deed the presence of spurious large-scale clustering power
above an assumed cosmological model is often taken to be
a clear indicator of uncorrected systematics in the data;
however, we must be careful not to do so here as we are
trying to measure, or limit, a large-scale PNG signal from
the data.
In previous analyses, a number of methods have been

used to correct the declination systematics: in some real-
space analyses [87, 88, 96], including G08 and G12, the
data were subdivided in declination bands, and expected
densities were rescaled to match each. Other authors
[35, 83, 85] found that this problem was minimized by
imposing a strict flux cut of F > 10 mJy; this however
discards a large fraction of sources. Finally, others [95]
working in harmonic space addressed the issue by as-
signing infinite variance to the m = 0 modes of the data,
e↵ectively discarding any azimuthally-invariant mode.
The method of fitting sub-bands in declination e↵ec-

tively assumes that any declination o↵sets are smooth
and fit by the particular distribution of bands chosen.
Going beyond the earlier analyses in G08 and G12, we
have found that the signal fluctuates depending on the
size chosen for these bands, leading to an uncertain auto-

FIG. 6. Systematic density fluctuations in NVSS. The upper
panel shows the strong change as a function of declination,
while the lower panel presents a weaker deviation we have
found as a function of right ascension. The data have been
smoothed with a Gaussian beam of r.m.s. � = 5 deg. The
colored band are the Poisson 1� � regions.

correlation. This suggests that we need a more robust
technique for correcting for these e↵ects if we are to
use this sample to robustly measure PNG. However, the
cross-correlation with WMAP is fairly stable to such cor-
rections: we show below in Section VA that the G12 re-
sults on the significance of ISW detection do not change
significantly.

Here we introduce a new method to deal with these sys-
tematics, which is inspired by the way in which the BOSS
collaboration created random catalogs that were used in
order to determine their clustering statistics. Lacking an
accurate a priori model for the redshift distribution of
the survey, random catalogs were constructed by taking
random points within the angular mask of the survey
and assigning redshifts randomly drawn from the true
observed redshifts [53]; such maps were shown to pro-
vide accurate means of reconstructing the correct large-
scale power with little bias. For NVSS, it is the angular
mask, rather than the radial mask, which is unknown.
We observe fluctuations in the number density that de-
pend strongly on r.a. and declination � which are clearly
spurious; we are unable to isolate the origin of these fluc-
tuations, so we do not know, a priori, the expected distri-
bution of NVSS galaxies on the sky. We will assume the
fluctuations we observe are associated with flux calibra-
tion errors and that they are separable functions of r.a.
and �. (Allowing an arbitrary distribution would totally
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FIG. 7. Large-scale clustering of NVSS and systematics sub-
traction. Top panel: We plot with red crosses the ACF of
NVSS without any correction, which presents a large excess
power on these scales. We then show with blue squares the
measurement using a declination striping correction as ap-
plied by Refs. [87, 88]. This largely agrees with the result
obtained by shu✏ing in declination only using the estimator
of Eq. (18) (green triangles). We finally show with dark blue
circles the measurement obtained applying the estimator of
Eq. (19), i.e. correcting for systematics in both coordinates,
which is closer to the ⇤CDM theoretical predictions with no
PNG (purple, solid). Bottom panel: Here we validate the
shu✏ing method with mocks. The data are replotted from
the top panel, while the lines show the mean of Gaussian
mocks (with added shot noise) under di↵erent assumptions.
We show in magenta (long-dashed) the case where the mocks
have been given systematic density fluctuations of Fig. 6, then
subtracted by shu✏ing. For the brown (short-dashed) curve,
shu✏ing is applied but the systematics are not introduced.
The orange (dot-dashed) case has the full systematics and
no shu✏ing, while the green (triple dot-dashed) case has the
systematics, and only shu✏ing in the declination direction.

negate any structure measurement.)
First we present a procedure to limit the impact of fluc-

tuations that are only dependent on declination. In this
case we estimate the mean angular mask by generating
a random map by assigning a number of random r.a.’s
(within the mask) to each observed �. Pixelizing, we ob-

tain a map, R1, which has the same average declination
dependence as the observed map. This can be normal-
ized to give the expected mean number density for every
pixel. We then obtain the corrected clustering replacing
the standard estimator of Eq. (17) with the formula:

ŵ1(#) =
1

N#

NpixX

i,j=1

✓
n̄R1

n̄D

Di

R1,i
� 1

◆ ✓
n̄R1

n̄D

Dj

R1,j
� 1

◆
fi fj ,

(18)
where n̄X indicates the mean density of the catalog X.
This is equivalent to assuming that the probability of ob-
serving an NVSS source at a given r.a. modulates exactly
as plotted in the lower panel of Fig. 6.

To extend this to the case where we have a systematic
in both directions, we produce a second random catalog
R2 constructed with the observed r.a. distribution and
random declinations. The average number density is as-
sumed to be proportional to the product of these two
random maps, yielding an e↵ective estimator

ŵ2(#) =
1

N#

NpixX

i,j=1

✓
n̄R1

n̄R2

n̄D

Di

R1,i R2,i
� 1

◆

✓
n̄R1

n̄R2

n̄D

Dj

R1,j R2,j
� 1

◆
fi fj . (19)

In practice, the random catalogs use ten times as many
points as are observed, which appears su�cient to remove
spurious shot noise in the estimate of the mean. In par-
allel with Ref. [53], we call this procedure ‘shu✏ing’ as it
shu✏es galaxy positions when creating the random cat-
alog providing the expected galaxy density at any point.
The extra terms in Eq. (19) can be considered as empir-
ical corrections in the r.a. and declination directions to
the expected galaxy density.

The e↵ect of the ‘shu✏ing’ procedure described above
on the NVSS ACF is displayed in Fig. 7.

First, we see that the raw NVSS ACF, when no cor-
rections are applied, is large (red crosses). This result is
comparable to what we see when the spatially-dependent
systematics of Fig. 6 are added to the mocks (orange dot-
dashed line in the bottom panel).

Second, the shu✏ing method works to reduce the
power in both real data and mocks with added system-
atics: in the former case (top panel), shu✏ing in the dec-
lination direction only (green triangles) yields an ACF
comparable with what was obtained with the striping
method (blue squares) — a similar ACF is obtained with
the mocks with systematics (green triple-dot-dashed line
in the bottom panel). When the full shu✏ing in both
directions is applied to the data, the result is lowered fur-
ther (solid navy circles); a similar e↵ect is again seen in
the mocks with systematics (long-dashed magenta line)
in the bottom panel. Incidentally, this result is similar to
what is obtained if shu✏ing mocks which do not include
the systematics (brown, short-dashed).

Third, we expect that shu✏ing should remove some
clustering strength even if there are no systematics
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FIG. 7. Large-scale clustering of NVSS and systematics sub-
traction. Top panel: We plot with red crosses the ACF of
NVSS without any correction, which presents a large excess
power on these scales. We then show with blue squares the
measurement using a declination striping correction as ap-
plied by Refs. [87, 88]. This largely agrees with the result
obtained by shu✏ing in declination only using the estimator
of Eq. (18) (green triangles). We finally show with dark blue
circles the measurement obtained applying the estimator of
Eq. (19), i.e. correcting for systematics in both coordinates,
which is closer to the ⇤CDM theoretical predictions with no
PNG (purple, solid). Bottom panel: Here we validate the
shu✏ing method with mocks. The data are replotted from
the top panel, while the lines show the mean of Gaussian
mocks (with added shot noise) under di↵erent assumptions.
We show in magenta (long-dashed) the case where the mocks
have been given systematic density fluctuations of Fig. 6, then
subtracted by shu✏ing. For the brown (short-dashed) curve,
shu✏ing is applied but the systematics are not introduced.
The orange (dot-dashed) case has the full systematics and
no shu✏ing, while the green (triple dot-dashed) case has the
systematics, and only shu✏ing in the declination direction.

negate any structure measurement.)
First we present a procedure to limit the impact of fluc-

tuations that are only dependent on declination. In this
case we estimate the mean angular mask by generating
a random map by assigning a number of random r.a.’s
(within the mask) to each observed �. Pixelizing, we ob-

tain a map, R1, which has the same average declination
dependence as the observed map. This can be normal-
ized to give the expected mean number density for every
pixel. We then obtain the corrected clustering replacing
the standard estimator of Eq. (17) with the formula:
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(18)
where n̄X indicates the mean density of the catalog X.
This is equivalent to assuming that the probability of ob-
serving an NVSS source at a given r.a. modulates exactly
as plotted in the lower panel of Fig. 6.

To extend this to the case where we have a systematic
in both directions, we produce a second random catalog
R2 constructed with the observed r.a. distribution and
random declinations. The average number density is as-
sumed to be proportional to the product of these two
random maps, yielding an e↵ective estimator
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1
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In practice, the random catalogs use ten times as many
points as are observed, which appears su�cient to remove
spurious shot noise in the estimate of the mean. In par-
allel with Ref. [53], we call this procedure ‘shu✏ing’ as it
shu✏es galaxy positions when creating the random cat-
alog providing the expected galaxy density at any point.
The extra terms in Eq. (19) can be considered as empir-
ical corrections in the r.a. and declination directions to
the expected galaxy density.

The e↵ect of the ‘shu✏ing’ procedure described above
on the NVSS ACF is displayed in Fig. 7.

First, we see that the raw NVSS ACF, when no cor-
rections are applied, is large (red crosses). This result is
comparable to what we see when the spatially-dependent
systematics of Fig. 6 are added to the mocks (orange dot-
dashed line in the bottom panel).

Second, the shu✏ing method works to reduce the
power in both real data and mocks with added system-
atics: in the former case (top panel), shu✏ing in the dec-
lination direction only (green triangles) yields an ACF
comparable with what was obtained with the striping
method (blue squares) — a similar ACF is obtained with
the mocks with systematics (green triple-dot-dashed line
in the bottom panel). When the full shu✏ing in both
directions is applied to the data, the result is lowered fur-
ther (solid navy circles); a similar e↵ect is again seen in
the mocks with systematics (long-dashed magenta line)
in the bottom panel. Incidentally, this result is similar to
what is obtained if shu✏ing mocks which do not include
the systematics (brown, short-dashed).

Third, we expect that shu✏ing should remove some
clustering strength even if there are no systematics



NVSS ‘shuffling’
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FIG. 7. Large-scale clustering of NVSS and systematics sub-
traction. Top panel: We plot with red crosses the ACF of
NVSS without any correction, which presents a large excess
power on these scales. We then show with blue squares the
measurement using a declination striping correction as ap-
plied by Refs. [87, 88]. This largely agrees with the result
obtained by shu✏ing in declination only using the estimator
of Eq. (18) (green triangles). We finally show with dark blue
circles the measurement obtained applying the estimator of
Eq. (19), i.e. correcting for systematics in both coordinates,
which is closer to the ⇤CDM theoretical predictions with no
PNG (purple, solid). Bottom panel: Here we validate the
shu✏ing method with mocks. The data are replotted from
the top panel, while the lines show the mean of Gaussian
mocks (with added shot noise) under di↵erent assumptions.
We show in magenta (long-dashed) the case where the mocks
have been given systematic density fluctuations of Fig. 6, then
subtracted by shu✏ing. For the brown (short-dashed) curve,
shu✏ing is applied but the systematics are not introduced.
The orange (dot-dashed) case has the full systematics and
no shu✏ing, while the green (triple dot-dashed) case has the
systematics, and only shu✏ing in the declination direction.

negate any structure measurement.)
First we present a procedure to limit the impact of fluc-

tuations that are only dependent on declination. In this
case we estimate the mean angular mask by generating
a random map by assigning a number of random r.a.’s
(within the mask) to each observed �. Pixelizing, we ob-

tain a map, R1, which has the same average declination
dependence as the observed map. This can be normal-
ized to give the expected mean number density for every
pixel. We then obtain the corrected clustering replacing
the standard estimator of Eq. (17) with the formula:

ŵ1(#) =
1

N#

NpixX

i,j=1

✓
n̄R1

n̄D

Di

R1,i
� 1

◆ ✓
n̄R1

n̄D

Dj

R1,j
� 1

◆
fi fj ,

(18)
where n̄X indicates the mean density of the catalog X.
This is equivalent to assuming that the probability of ob-
serving an NVSS source at a given r.a. modulates exactly
as plotted in the lower panel of Fig. 6.

To extend this to the case where we have a systematic
in both directions, we produce a second random catalog
R2 constructed with the observed r.a. distribution and
random declinations. The average number density is as-
sumed to be proportional to the product of these two
random maps, yielding an e↵ective estimator

ŵ2(#) =
1

N#

NpixX
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n̄R1

n̄R2

n̄D

Di

R1,i R2,i
� 1

◆

✓
n̄R1

n̄R2

n̄D

Dj

R1,j R2,j
� 1

◆
fi fj . (19)

In practice, the random catalogs use ten times as many
points as are observed, which appears su�cient to remove
spurious shot noise in the estimate of the mean. In par-
allel with Ref. [53], we call this procedure ‘shu✏ing’ as it
shu✏es galaxy positions when creating the random cat-
alog providing the expected galaxy density at any point.
The extra terms in Eq. (19) can be considered as empir-
ical corrections in the r.a. and declination directions to
the expected galaxy density.

The e↵ect of the ‘shu✏ing’ procedure described above
on the NVSS ACF is displayed in Fig. 7.

First, we see that the raw NVSS ACF, when no cor-
rections are applied, is large (red crosses). This result is
comparable to what we see when the spatially-dependent
systematics of Fig. 6 are added to the mocks (orange dot-
dashed line in the bottom panel).

Second, the shu✏ing method works to reduce the
power in both real data and mocks with added system-
atics: in the former case (top panel), shu✏ing in the dec-
lination direction only (green triangles) yields an ACF
comparable with what was obtained with the striping
method (blue squares) — a similar ACF is obtained with
the mocks with systematics (green triple-dot-dashed line
in the bottom panel). When the full shu✏ing in both
directions is applied to the data, the result is lowered fur-
ther (solid navy circles); a similar e↵ect is again seen in
the mocks with systematics (long-dashed magenta line)
in the bottom panel. Incidentally, this result is similar to
what is obtained if shu✏ing mocks which do not include
the systematics (brown, short-dashed).

Third, we expect that shu✏ing should remove some
clustering strength even if there are no systematics

• A possible fix:

• Get r.a., dec mask as BOSS gets 
redshift mask: modulated randoms

• (1) If assuming only dec effect:

• random map R1 assigning 
random r.a. to observed dec.

• (2) Both r.a. dec corrections:

• also randoms R2 assigning 
random dec to observed r.a.

• Weigh data D by (R1 R2) in ACF

• Validated with mocks
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FIG. 8. Large-scale clustering of the quasars and stellar con-
tamination. We plot in red (solid) the prediction for a model
with no stellar contamination and no PNG. The green (dot-
dashed) and blue (dashed) lines correspond to models with
stellar contamination and with PNG, which are both able to
explain the observed excess power (black data points). Con-
stant linear bias is assumed.

present, as any true fluctuations in number density that
align with the r.a. and � directions will be smoothed.
We quantify the expected amount by applying shu✏ing
to our mock catalogs, and find that a constant damp-
ing factor q ' 2/3 is a reasonable approximation. The
fiducial theoretical ACF is displayed using a solid purple
line, while the mean ACF of the mocks when shu✏ing
is applied is shown with a magenta dashed line (bottom
panel). A factor 1/q has already been applied to the
mocks to account for the power removed by shu✏ing: we
can see there is substantial agreement on these scales.
We apply the shu✏ing correction to the NVSS mocks

when estimating the covariance matrix, also including
the observed systematic fluctuations in the mocks. As
described above, shu✏ing reduces the amplitude of the
ACF by a factor q ' 2/3: we account for this bias when
modeling the NVSS ACF by simply multiplying the fidu-
cial theoretical ACF by 1/q (and any NVSS CCF by
1/
p
q).

D. Quasar Systematics

Quasar samples are promising for future PNG mea-
surements, as they are easily observed to high-redshifts
and are high-bias tracers of the matter distribution. The
DR6 photometric quasar catalog has been used previ-

FIG. 9. Top panel: The angular auto-correlation function,
ACF, multiplied by the angular scale #, when the DR6 quasar
sample is sub-divided based on i-band magnitudes. The solid
black line is the prediction for the standard ⇤CDM model.
Bottom panel: The measured ACF when the DR6 quasar
sample is split based on photometric redshift, z.

ously to constrain PNG, and Ref. [36] found that these
data alone yield fNL = 62 ± 26 (1�). However, this re-
sult is in conflict with Ref. [32], who found fNL = 8+26

�37
(for their fiducial ‘QSO’ case): they used an earlier sub-
set of the DR6 data from the SDSS DR3 [97]. Ref. [55]
thoroughly tested the DR6 quasar sample against poten-
tial contaminants, and found significant e↵ects associated
with stellar density, the stellar color locus, airmass, and
seeing. They concluded that the sample was not fit to
use for fNL measurements. Here we further investigate
this issue, and argue that the quasar data should only be
included through cross-correlations with other surveys.
Future spectroscopic quasar samples will be immune to
many of these issues.

The fiducial photometric quasar sample we use is
drawn from the SDSS data release six (DR6) [98] quasar
catalog constructed by Ref. [99]. Briefly, this catalog
contains more than one million objects selected via a
non-parametric Bayes classifier – kernel density estimate
(NBC-KDE) method, including both UV-excess (UVX)
and high-redshift samples, up to a magnitude limit of
i = 21.3. The total footprint is 8417 deg2. Nevertheless,
to reduce contamination as much as possible, we restrict
the analysis to the UVX sample, as in G08 and G12, and
we reduce the footprint with a stricter extinction cut,
discarding areas with Ar > 0.14, so that we actually use
502,565 sources covering 6,912 deg2.
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FIG. 10. Observed relationship between the number density of DR6 quasars nq with respect to the average hnqi and a choice
of systematics: airmass, sky brightness, galactic extinction in the r-band, and stellar density, in di↵erent redshift ranges.

Photometric quasars are particularly prone to stel-
lar contamination, as their faint and compact nature
matches those of stars. If we assume a stellar contami-
nation fraction given by , the expected auto-correlation
function will be given by

wobs(#) = (1� )2 wqso(#) + 2 wstar(#) , (20)

where we estimate the stellar ACF wstar(#) by measur-
ing the clustering of stars from the SDSS survey. The
distribution of stars over the DR6 footprint is distinctly
anisotropic since they trace the structure of the Galaxy,
and the auto-correlation of stars is therefore significant
at large scales. A residual contamination of the order of
⇠ 2.5% could explain the observed plateau in the ACF
as shown in Fig. 8, as could fNL ⇠ 50. We found from
both the local relationship between quasar density and
stellar density and also by directly measuring the cross-
correlation function between the quasars and a catalog
of SDSS stars that the actual contamination fraction is
only ⇠ 1% in these data. The quasar ACF data thus
suggest there are either further spurious fluctuations in
the quasar density field, or fNL is non-zero (as suggested
by Ref. [36]).
It is reasonable to assume that sub-samples at fainter

magnitude should be less reliable and more severely af-
fected by systematics. We therefore measured the ACF
with cuts on i-band magnitude and we display the results
in the top panel of Fig. 9. Indeed, the ACF of the faintest
data (i > 20.5; black triangles) displays much larger clus-
tering amplitudes than the brighter sub-samples (and the
di↵erence is inconsistent with the change in linear bias
and a non-zero fNL). However, we are unable to isolate a
particular magnitude at which we find that the system-
atic relationships become negligible and we do not find
that the fNL constraints from the DR6 quasar ACF be-
come stable for samples brighter than any given i-band
magnitude.
The bottom panel of Fig. 9 displays the ACF when we

split the quasar sample by photometric redshift. Both

the z > 2.2 (black triangles) and z < 1.0 (green stars)
samples display significant large-scale clustering, that we
can attribute to, in large part, significant stellar contam-
ination in these subsamples (confirmed both via cross-
correlation and local relationships with stellar density).
However, we find that cutting by photometric redshift
can introduce systematic fluctuations, as would be the
case if there were any relationship between the estimated
redshift and a potential systematic. This is illustrated by
the fact that the ACF of both the 1.6 < z < 2.2 (blue cir-
cles) and 1.0 < z < 1.6 (red squares) samples has larger
amplitudes than the z < 2.2 (cyan triangles) ACF, de-
spite the fact that the z < 2.2 sample contains quasars
with z < 1.0 and thus has significant stellar contamina-
tion. Thus, while the 1.0 < z < 2.2 sample removes data
with stellar contamination, the cuts on redshift appear to
induce other systematic fluctuations. Some examples are
shown in Fig. 10: e.g. we find a significant relationship
with Galactic extinction Ar, when we cut the sample to
1.0 < z < 2.2, but find no such relationship when no
redshift cut is applied. We further find significant corre-
lations with air mass, sky brightness, and especially at
high redshift, with the surface density of stars.

We have not studied the DR6 quasar sample as thor-
oughly as Ref. [55], but we have, independently, reached
a similar conclusion: the DR6 quasar ACF should not
be used to obtain fNL constraints. We have found that
significant correlations exist with potential systematics,
such as stellar density, Galactic extinction, and airmass,
exist in excess of those expected. Also, these relation-
ships depend non-trivially on the redshift and magnitude
of the quasar sample that is selected. The e↵ect of fNL on
the quasar density field will also depend on redshift and
the bias of the sample, and we are therefore unable to
address systematic concerns using the methods outlined
in Refs. [49, 52].

However, we do not expect these issues to be corre-
lated with other samples, and should be able to trust
correlations between the quasars and other data sets. In
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at large scales. A residual contamination of the order of
⇠ 2.5% could explain the observed plateau in the ACF
as shown in Fig. 8, as could fNL ⇠ 50. We found from
both the local relationship between quasar density and
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suggest there are either further spurious fluctuations in
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samples display significant large-scale clustering, that we
can attribute to, in large part, significant stellar contam-
ination in these subsamples (confirmed both via cross-
correlation and local relationships with stellar density).
However, we find that cutting by photometric redshift
can introduce systematic fluctuations, as would be the
case if there were any relationship between the estimated
redshift and a potential systematic. This is illustrated by
the fact that the ACF of both the 1.6 < z < 2.2 (blue cir-
cles) and 1.0 < z < 1.6 (red squares) samples has larger
amplitudes than the z < 2.2 (cyan triangles) ACF, de-
spite the fact that the z < 2.2 sample contains quasars
with z < 1.0 and thus has significant stellar contamina-
tion. Thus, while the 1.0 < z < 2.2 sample removes data
with stellar contamination, the cuts on redshift appear to
induce other systematic fluctuations. Some examples are
shown in Fig. 10: e.g. we find a significant relationship
with Galactic extinction Ar, when we cut the sample to
1.0 < z < 2.2, but find no such relationship when no
redshift cut is applied. We further find significant corre-
lations with air mass, sky brightness, and especially at
high redshift, with the surface density of stars.

We have not studied the DR6 quasar sample as thor-
oughly as Ref. [55], but we have, independently, reached
a similar conclusion: the DR6 quasar ACF should not
be used to obtain fNL constraints. We have found that
significant correlations exist with potential systematics,
such as stellar density, Galactic extinction, and airmass,
exist in excess of those expected. Also, these relation-
ships depend non-trivially on the redshift and magnitude
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Quasar systematics
• Splitting by photo-z: worse

• Higher excess power at high z

• Cut? But then correlation 
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systematics
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• Large-angle ACF fluctuates

• Remaining systematics -
calibration? [Pullen & Hirata 12]

• QSO ACF unreliable on large 
scales - too faint.  BOSS cut at    
i < 19.9, these at i ~ 21+
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FIG. 11. Complete set of the two-point functions we use. The top row shows the CMB-galaxy correlation functions, while the
remaining panels are the galaxy-galaxy correlations. Error bars are from 10,000 Monte Carlos, whose means are the red dashed
lines, and the blue line is the standard ⇤CDM cosmology from WMAP7, with constant biases (not a fit to these data).

particular, the quasars have a large overlap in redshift
with the NVSS data. Potential SDSS systematics, such
as airmass and seeing, are survey-specific and should thus
have no correlation with NVSS data. In addition, we find
no correlation with NVSS data and potential systematics
(Galactic extinction, stellar density, synchrotron emis-
sion) that trace the structure of the Galaxy. Further,
we trust correlations between the quasars and the LRGs,
as the LRG sample has already proven to be robust to
systematic fluctuations. Thus, while we do not consider
the quasar ACF as a reliable probe of PNG, we will ex-
ploit the external correlations between the quasars and
the other data sets. Also in this case, this includes the
cross-correlation with the CMB, which for the same rea-
sons should be relatively free from contamination, as also
confirmed by its fequency independence shown in G12.

IV. MODELING THE DATA

A. Data Considered

We have discussed six di↵erent large-scale structure
data sets, which yield six auto-correlations, fifteen cross-
correlations and six correlations with the WMAP CMB
temperature. Our final data set is shown in Fig. 11,
including the galaxy-CMB cross-correlations and the
galaxy-galaxy correlations between all the catalogs. In all
cases below, we discard the first five angular bins of the
2MASS-CMB CCF, which is believed to be contaminated
by the SZ e↵ect. We also discard the zero-lag data points
in the density-density correlations based on contamina-
tion from non-linear structure formation, which we are
not modeling, and from possibly inaccurate shot-noise

HEAO2MASS NVSSSDSS LRG
SDSS 
QSOSDSS gal

⟨Tgi⟩ 
⟨gigi⟩
⟨gigj⟩

effect of fNL: 
large-scale 

excess power
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for the systematics and uncertainties, over which we
marginalize. These describe our assumptions about the
intrinsic bias (in the absence of PNG e↵ects), uncertain-
ties in the redshift distributions of the surveys (and par-
ticularly their overlaps) and other e↵ects.
For most catalogs i, we assume an intrinsic (Gaussian)

bias evolution of the form:

bi1(z) = 1 +
bi0 � 1

D�i(z)
; (21)

we assume �i = 2 in most cases [102]; this bias ap-
proaches unity in the future, and is therefore appropriate
for flux-limited samples. However, for the quasars we in-
stead assume

bQSO
1 (z) =

bQSO
0

D�QSO(z)
, (22)

which instead approaches zero in the future. This is
consistent with observations of quasars [103, 104], that
suggest that the preferred halo mass of quasars is ⇠
1012M�, independent of redshift. Setting �QSO = 1.6
approximately satisfies this constant-mass condition for
0.43 < z < 2.4, which spans the median redshifts of
Refs. [103, 104], and is the span of redshifts at which we
may reasonably expect to obtain meaningful information
from the DR6 quasar sample. We have also considered
leaving all the slopes �i free and marginalizing over them,
but we found that our data set is not powerful enough for
this purpose. These assumptions about the bias evolu-
tion are quite critical for our analysis of primordial non-
Gaussianity.
In addition we allow the possibility to add 15 extra

parameters �ij to account for uncertainties in the red-
shift distributions 'i(z). A factor arises for each pair of
catalogs, and they are introduced in the density-density
cross-correlations so that:

w
gigj
obs (#) = �ij w

gigj (#) . (23)

E↵ectively, the uncertainty in 'i(z) becomes more im-
portant when the overlap between two surveys is smaller.
For this reason, we introduce a Gaussian prior, with mean
µ� = h�iji = 1 and a variance �2

� which depends on the
fiducial survey overlap, such that the r.m.s. is �� = 0
when the overlap is total (the ACFs), and �� = 2 when
the overlap is expected to be small. We linearly interpo-
late the prior between these two values. We also checked
that the results on PNG do not change significantly when
doubling the r.m.s. of these priors.
We also add a free stellar contamination fraction i for

the three samples derived from SDSS, used as described
for the quasars in Eq. (20). We finally add one extra pa-
rameter for the HEAO catalog: an amplitude describing
the clustering-independent auto-correlation due to source
shot noise spread over the large PSF of the instrument
↵HEAO [105].
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FIG. 12. Marginalized posterior probability distributions on a
choice of cosmological parameters for di↵erent models. First
row: The flat ⇤CDM case. The results are in agreement with
the concordance model, but we can see that our data (the
‘fair’ data set is used) shift the peak of the distribution to-
wards models with more dark energy. Second row: Same, with
the addition of local fNL. (The CMB temperature power spec-
trum can not constrain PNG and is ignored.) The standard
cosmological parameters do not change, and fNL is consistent
with zero. Third row: Same, for the case of a wCDM model.
Here the CMB can not constrain these parameters simulta-
neously, hence the broad posteriors. The degeneracy between
⌦m �w is broken by adding either Type Ia SNe or our data.
The HST H0 prior was added to the w run using our data.

V. RESULTS

We examine a range of models; starting from a simple
flat ⇤CDM model, we add primordial non-Gaussianity of
di↵erent types, or the dark energy equation of state w.
The parameters which we use and their prior ranges are
shown in Table I.

We study the cosmological consequences of these data
via a Monte Carlo Markov Chain (MCMC) method us-
ing the publicly available Cosmomc code [106] and its
extension to nested sampling Multinest [107], which re-
places the Metropolis-Hastings with a nested sampling al-
gorithm, achieving in the process higher accuracy, greater
speed, and an estimation of the Bayesian evidence for
each model. We ensured to always use high enough accu-
racy within Multinest and Camb to obtain numerical
stability, also enforcing a su�ciently broad k range in the
integrations.
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cosmological parameters do not change, and fNL is consistent
with zero. Third row: Same, for the case of a wCDM model.
Here the CMB can not constrain these parameters simulta-
neously, hence the broad posteriors. The degeneracy between
⌦m �w is broken by adding either Type Ia SNe or our data.
The HST H0 prior was added to the w run using our data.

V. RESULTS

We examine a range of models; starting from a simple
flat ⇤CDM model, we add primordial non-Gaussianity of
di↵erent types, or the dark energy equation of state w.
The parameters which we use and their prior ranges are
shown in Table I.

We study the cosmological consequences of these data
via a Monte Carlo Markov Chain (MCMC) method us-
ing the publicly available Cosmomc code [106] and its
extension to nested sampling Multinest [107], which re-
places the Metropolis-Hastings with a nested sampling al-
gorithm, achieving in the process higher accuracy, greater
speed, and an estimation of the Bayesian evidence for
each model. We ensured to always use high enough accu-
racy within Multinest and Camb to obtain numerical
stability, also enforcing a su�ciently broad k range in the
integrations.
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for the systematics and uncertainties, over which we
marginalize. These describe our assumptions about the
intrinsic bias (in the absence of PNG e↵ects), uncertain-
ties in the redshift distributions of the surveys (and par-
ticularly their overlaps) and other e↵ects.
For most catalogs i, we assume an intrinsic (Gaussian)

bias evolution of the form:

bi1(z) = 1 +
bi0 � 1

D�i(z)
; (21)

we assume �i = 2 in most cases [102]; this bias ap-
proaches unity in the future, and is therefore appropriate
for flux-limited samples. However, for the quasars we in-
stead assume

bQSO
1 (z) =

bQSO
0

D�QSO(z)
, (22)

which instead approaches zero in the future. This is
consistent with observations of quasars [103, 104], that
suggest that the preferred halo mass of quasars is ⇠
1012M�, independent of redshift. Setting �QSO = 1.6
approximately satisfies this constant-mass condition for
0.43 < z < 2.4, which spans the median redshifts of
Refs. [103, 104], and is the span of redshifts at which we
may reasonably expect to obtain meaningful information
from the DR6 quasar sample. We have also considered
leaving all the slopes �i free and marginalizing over them,
but we found that our data set is not powerful enough for
this purpose. These assumptions about the bias evolu-
tion are quite critical for our analysis of primordial non-
Gaussianity.
In addition we allow the possibility to add 15 extra

parameters �ij to account for uncertainties in the red-
shift distributions 'i(z). A factor arises for each pair of
catalogs, and they are introduced in the density-density
cross-correlations so that:

w
gigj
obs (#) = �ij w

gigj (#) . (23)

E↵ectively, the uncertainty in 'i(z) becomes more im-
portant when the overlap between two surveys is smaller.
For this reason, we introduce a Gaussian prior, with mean
µ� = h�iji = 1 and a variance �2

� which depends on the
fiducial survey overlap, such that the r.m.s. is �� = 0
when the overlap is total (the ACFs), and �� = 2 when
the overlap is expected to be small. We linearly interpo-
late the prior between these two values. We also checked
that the results on PNG do not change significantly when
doubling the r.m.s. of these priors.
We also add a free stellar contamination fraction i for

the three samples derived from SDSS, used as described
for the quasars in Eq. (20). We finally add one extra pa-
rameter for the HEAO catalog: an amplitude describing
the clustering-independent auto-correlation due to source
shot noise spread over the large PSF of the instrument
↵HEAO [105].
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FIG. 12. Marginalized posterior probability distributions on a
choice of cosmological parameters for di↵erent models. First
row: The flat ⇤CDM case. The results are in agreement with
the concordance model, but we can see that our data (the
‘fair’ data set is used) shift the peak of the distribution to-
wards models with more dark energy. Second row: Same, with
the addition of local fNL. (The CMB temperature power spec-
trum can not constrain PNG and is ignored.) The standard
cosmological parameters do not change, and fNL is consistent
with zero. Third row: Same, for the case of a wCDM model.
Here the CMB can not constrain these parameters simulta-
neously, hence the broad posteriors. The degeneracy between
⌦m �w is broken by adding either Type Ia SNe or our data.
The HST H0 prior was added to the w run using our data.

V. RESULTS

We examine a range of models; starting from a simple
flat ⇤CDM model, we add primordial non-Gaussianity of
di↵erent types, or the dark energy equation of state w.
The parameters which we use and their prior ranges are
shown in Table I.

We study the cosmological consequences of these data
via a Monte Carlo Markov Chain (MCMC) method us-
ing the publicly available Cosmomc code [106] and its
extension to nested sampling Multinest [107], which re-
places the Metropolis-Hastings with a nested sampling al-
gorithm, achieving in the process higher accuracy, greater
speed, and an estimation of the Bayesian evidence for
each model. We ensured to always use high enough accu-
racy within Multinest and Camb to obtain numerical
stability, also enforcing a su�ciently broad k range in the
integrations.



Monte Carlo likelihood analysis

Tg gg
Correlation matrix =
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• Full Covariance Matrix (351x351) 
from 10,000 Monte Carlo mocks

• Theory models: with modified 
Camb code

• Nested sampling: Multinest 
[Feroz et al. 09]

• Results with all data + WMAP 
CMB TT prior: 

naive: 30 < fNL < 62 !!!  @  95% c.l. Further study to 
understand this...



What can we trust?
• Non-zero fNL driven by quasar auto-

correlations (+ residual NVSS excess)

• Not all data equally reliable: 3 results

• Full data

• Ultra-conservative: drop 2MASS, main 
gal, and all ACF except BOSS LRGs

• Fair: drop only NVSS, QSO auto-
correlation

• Cross-correlations safer than auto-
correlations, keep them
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full, unreliable: 30 < fNL < 62  @95%

ultra-conservative: -37 < fNL < 25 @95%

‘fair’: -29 < fNL < 31 @95%

HEAO2MASS NVSSSDSS LRG
SDSS 
QSOSDSS gal

NO evidence for non-Gaussianity!

12

FIG. 11. Complete set of the two-point functions we use. The top row shows the CMB-galaxy correlation functions, while the
remaining panels are the galaxy-galaxy correlations. Error bars are from 10,000 Monte Carlos, whose means are the red dashed
lines, and the blue line is the standard ⇤CDM cosmology from WMAP7, with constant biases (not a fit to these data).

particular, the quasars have a large overlap in redshift
with the NVSS data. Potential SDSS systematics, such
as airmass and seeing, are survey-specific and should thus
have no correlation with NVSS data. In addition, we find
no correlation with NVSS data and potential systematics
(Galactic extinction, stellar density, synchrotron emis-
sion) that trace the structure of the Galaxy. Further,
we trust correlations between the quasars and the LRGs,
as the LRG sample has already proven to be robust to
systematic fluctuations. Thus, while we do not consider
the quasar ACF as a reliable probe of PNG, we will ex-
ploit the external correlations between the quasars and
the other data sets. Also in this case, this includes the
cross-correlation with the CMB, which for the same rea-
sons should be relatively free from contamination, as also
confirmed by its fequency independence shown in G12.

IV. MODELING THE DATA

A. Data Considered

We have discussed six di↵erent large-scale structure
data sets, which yield six auto-correlations, fifteen cross-
correlations and six correlations with the WMAP CMB
temperature. Our final data set is shown in Fig. 11,
including the galaxy-CMB cross-correlations and the
galaxy-galaxy correlations between all the catalogs. In all
cases below, we discard the first five angular bins of the
2MASS-CMB CCF, which is believed to be contaminated
by the SZ e↵ect. We also discard the zero-lag data points
in the density-density correlations based on contamina-
tion from non-linear structure formation, which we are
not modeling, and from possibly inaccurate shot-noise
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FIG. 14. Marginalized posterior probability distributions for
fNL versus ⌦m,�8 for di↵erent data sets. The näıve result
obtained using the complete data set (red contours, at 68
and 95% c.l.), which would suggest the presence of signifi-
cant PNG, is not stable. When using only the most reliable
parts of our compilation, we obtain the conservative result
(green), which remains stable when adding back most of the
data (blue), except the quasar and NVSS ACFs. As these
are the least reliable data, as we discussed in our systematic
section, we decide to discard them.

detection: �37 < fNL < 25 at 95% c.l., corresponding
to the green contours of Fig. 14. When we examine the
‘fair’ data, we still see no hint for PNG (blue contours in
Fig. 14). By looking at both panels of Fig. 14, we can
see no evidence of strong degeneracies between fNL and
⌦m or �8. The results are in agreement with the sim-
plest Gaussian ⇤CDM model: the marginalized 95% c.l.
interval from our ‘fair’ sample is �29 < fNL < 31.
We found that including also the NVSS ACF leads to a

higher inferred fNL because of its high ACF in the angu-
lar range 2  #  5 deg. In this case, although we include
more data than in the conservative case, we actually see
an increase in the size of the errors: �28 < fNL < 57
(95%). We have found the reason by looking at the re-
sult when using the NVSS ACF only. The marginal-

Data fNL 95% interval
Conservative �37 < fNL < 25

Fair �29 < fNL < 31
Fair + NVSS ACF �28 < fNL < 57

Näıve 30 < fNL < 62
Conservative; with �ij , �

max
� = ln 2 �35 < fNL < 27

Conservative; with �ij , �
max
� = ln 4 �37 < fNL < 25

LRG-CMB �340 < fNL < 326
NVSS-CMB �130 < fNL < 103
QSO-CMB �226 < fNL < 304
LRG-LRG �90 < fNL < 120

NVSS-NVSS �68 < fNL < 113
QSO-QSO �15 < fNL < 98
LRG-NVSS �206 < fNL < 194
LRG-HEAO �269 < fNL < 258
NVSS-HEAO �115 < fNL < 86
NVSS-QSO �183 < fNL < 138
HEAO-QSO �108 < fNL < 85

TABLE III. Summary of the fNL constraints. The runs with a
single correlation functions include the following marginaliza-
tions: over one bias parameter for the galaxy-CMB cases; over
one bias parameter and (for the SDSS catalogs) one stellar
contamination parameter for the ACFs; over two bias param-
eters for the density-density CCFs. The two runs with the
nuisance parameters �ij have two di↵erent choices for their
Gaussian priors.

ized likelihood of fNL is in this case broader and, while
peaked around fNL ' 50, it has a long tail extending
until fNL ' �50. This means that the previous best-
fit region around fNL ' 0 does not get discarded. This
suggests that, even after our cleaning procedure, the clus-
tering present in the NVSS ACF is still in tension with
the other data sets.

We can see the corresponding marginalized 1D distri-
butions in the second row of Fig. 12; by comparing with
the first row, we can also notice that best-fit regions of a
selection of other cosmological parameters do not change
when adding fNL: this indicates overall low degeneracy
between these parameters and fNL.

When considering the ‘näıve’ data set, we examined
the importance of the degeneracies between fNL and
other parameters, particularly the stellar contamination
 and bias b0. We found that, perhaps surprisingly, there
is no significant degeneracy with the quasars’ , while the
degeneracy with b0 is more pronounced: by raising it to
b0 ' 1, values as low as fNL ' 30 are allowed. When
using the quasars’ ACF however, the Gaussian limit is
always excluded at > 2�.

We summarize the constraints on fNL in Table III and
in Fig. 15 for clarity. Here we compare the marginalized
constraints obtained when using di↵erent parts of our
data set. We can see once again that most results agree
with Gaussian initial conditions, and among each other.
When considering single auto-correlation functions, we
always marginalize over cosmology including the WMAP
CMB likelihood, and over one bias factor and one stellar

Results

• Conservative & Fair: consistent 
with standard model, no PNG

• Fair data + WMAP7: prefer 
slightly lower matter content

• No significant degeneracies fNL - 
other parameters

• NVSS ACF still problematic 
(alone has double peak), we do 
not use it, but consistent with 0

• Later confirmed by Planck:       
fNL = +2.7 ± 5.8  (1σ) 
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‘conservative’: fNL = -6 ± 15.5  (1σ) 
‘fair’: fNL = +1 ± 15  (1σ)
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FIG. 15. Comparison of the marginalized posterior proba-
bility distribution on fNL using di↵erent parts of our data
set, making up the ‘conservative’ collection plus the ACFs of
NVSS and quasars. We show the results from single corre-
lation functions in the top (blue), and from combined sub-
samples of the whole data set in the bottom part (red).
The lines correspond to 68 and 95% ranges, have been
marginalized over the cosmological parameters, and include
the WMAP CMB priors. The points represent the mean val-
ues of the posterior likelihoods. The results from single auto-
correlation functions have also been marginalized over one
bias parameter and one stellar contamination fraction (for the
SDSS samples), while the results from density-density corre-
lations have been marginalized over two bias parameters, and
over one bias parameter for the density-CMB cases.

contamination fraction (for the data derived from SDSS),
while the density-density correlations include two free
bias parameters and the density-CMB correlations one
bias parameter. In the LRG-LRG case we recover a re-
sult consistent with the recent analysis by Ref. [37], who
found �45 < fNL < 195 at 95% using the spectroscopic
sample of the CMASS LRGs, which contains ⇠ 1/3 of the
photoz sample we use. Notice that, especially in the re-
sults from single correlation functions, the factor (b1�1)
within the bias correction�b has significant e↵ects on the
fNL error bars. This is e.g. the case for the CMB-NVSS
correlation: as these data are above the ⇤CDM predic-
tion, the best-fit bias is in this case raised by 70% with
respect to the best fit from the ACF: this reduces the
fNL error bars by a similar amount.

The a
NL

Model We then extend our model to gen-
eralized PNG defined in Eq. (8): we thus allow for scale
dependence of the bias of any slope aNL, which reduces
to aNL = 2 in the local, scale-independent case. We
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FIG. 16. Marginalized posterior probability distributions for
extended PNG models. Top panel: The parameter aNL de-
fines the scale-dependence of the bias and it is aNL = 2 in
the local, scale-independent model. The two shaded contours
represent the 95 and 99% confidence regions. There is a ver-
tical infinite degeneracy along the fNL = 2 direction, which
is only partially visible due to finite sampling resolution and
smoothing. Bottom panel: Marginalized constraints on the
fNL � gNL degeneracy (68 and 95% regions). As both pa-
rameters produce the same scale dependence of the bias, they
are degenerate, but only partially, as the redshift dependence
is di↵erent. Note that the gNL constraints are optimistic, as
they assume the validity of the fitting formula by Ref. [60] for
our data.

show our marginalized posterior likelihood distribution
in the top panel of Fig. 16, where we can see that, in
line with the lack of evidence for fNL, there is no evi-
dence for aNL either. The full marginalized upper limit
we find is aNL < 1.7 at 95%, but it must be born in mind
that there is an infinite degeneracy along the direction
fNL = 0 by construction: thus, this result is strongly
dependent on our adopted priors, rather than being a
“stand-alone measurement”. The correspondent bound
on nfNL

can be found using Eq. (10).
The g

NL

Model We finally consider the gNL model.
We shall here make the optimistic assumption that the
fitting formula of Eq. (7) is a reasonable approximation
to the e↵ect of gNL, keeping in mind that this may not be
accurate in all cases due to the low bias of our catalogs.
Under this assumption we find �4.5·105 < gNL < 1.6·105
(95%) if assuming fNL = 0. However as shown by
Refs. [60, 61], and as clear from Eq. (1), there is a de-
generacy between fNL and gNL, as both parameters pro-
duce a scale dependence of the bias of the same order
⇠ k�2; the degeneracy is alleviated by the di↵erent red-

Extended PNG

• Variable slope of scale-dependent 
bias: aNL 

• accounts for both non-local model 
or for local fNL(k)

• aNL = 2 for local, scale-independent 
case

• Kurtosis gNL model

• we assume bias fitting formula by 
Smith, Ferraro, LoVerde 12, 
optimistic assumption!

• Marginalizing over fNL: (degeneracy 
partially broken)
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-5.8 ∙ 105 < gNL < 1.7 ∙ 105   @95%



Bayesian evidence

• Model selection A vs B:

• Bayes’ factor B = Z(A) / Z(B)

• Occam’s razor

• Drawback: some prior 
dependence
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FIG. 17. Marginalized posterior probability distributions for
⌦m vs w for di↵erent data sets: CMB only (blue), CMB +
Type Ia Supernovae (red), and CMB + our data (green). The
results are in agreement with the concordance ⇤CDM model.
The HST H0 prior was added to the run using our data.

shift dependences. This is indeed what happens when
we consider the complete model where both parameters
are left free: we can see in the bottom panel of Fig. 16
that the marginalized posterior presents this degeneracy,
as demonstrated with N -body simulations by Ref. [61].
Also in this case the Gaussian model remains well within
the 95% region: the marginalized constraints on the two
parameters are marginally degraded to �23 < fNL < 42
and �5.8 ·105 < gNL < 1.7 ·105 at 95% respectively when
they are both set free.

C. Dark Energy

Without the ISW e↵ect from the presence of dark
energy, we would not be able to use the CMB cross-
correlations to constrain PNG. In the above analysis, we
jointly fitted the dark energy density and PNG to test the
sensitivity of the PNG measurements to our assumptions
about DE.
The wCDM Model We next also consider models

with Gaussian initial conditions, and use the ISW data
to constrain the simplest dynamical dark energy of equa-
tion of state w. We present in the third row of Fig. 12
the marginalized 1D posterior probability distributions
when considering this wCDM model. Here we can see
that, as it is well known, the CMB temperature power
spectrum alone can not break the ⌦m � w degeneracy,
which is broken instead by either Type Ia Supernovae

or our data. This can be seen more clearly in the 2D
plot of Fig. 17. Here we show that the results from our
data and the CMB power spectrum reduce the parameter
space significantly around the concordance values. Notice
that we have added the HST prior [108] on the Hubble
constant H0 = 74.2 ± 3.6, since we found that other-
wise significant degeneracies appear between w, the bias
parameters, and H0, due to compensating e↵ects in the
growth function D(z). When marginalizing over all other
parameters, we find from our data �1.07 < w < �0.69
at 95%. This confirms the overall agreement with the
standard ⇤CDM paradigm of the ISW measurements.

D. Model Selection

Nested sampling allows model selection in addition to
parameter estimation, thanks to the calculation of the
Bayesian evidence factor for each model. Briefly, if we
assume a model M of parameters ⇥, and we compare it
with data D, Bayes’ theorem states that the posterior
probability distribution P on the parameters is given by

P(⇥) =
L(⇥)⇧(⇥)

Z(M)
, (26)

where the prior is ⇧(⇥) = P (⇥|M), the likelihood
is L(⇥) = P (D|⇥,M), and the Bayesian evidence is
Z(M) = P (D|M). When interested in parameter esti-
mation only, it is common to neglect the evidence Z and
simply study the posteriors of arbitrary normalization for
a given model. However here we will also compare di↵er-
ent models (e.g. with and without PNG), and for this we
will use the evidence. Model selection between two mod-
els M,N can be performed by calculating the ratio of
their evidences, also called Bayes factor: B ⌘ ZN/ZM ,
so that lnB = � lnZ. This factor, which incorporates
Occam’s razor by penalizing models with unnecessary ex-
tra parameters, expresses the odds between the models
given the data, and can be qualitatively interpreted with
the heuristic Je↵rey’s scale, which states that the model
selection is inconclusive if | lnB| < 1, and that the ev-
idence for one model is weak, moderate, or strong for
lnB > 1, lnB > 2.5, lnB > 5 respectively [109].

To test non-Gaussianity, we can compare the Bayesian
evidence Z of the models with and without PNG. As
shown in Table IV, the Bayes factor between these models
is � lnZ = �1.62 in the case of fNL and � lnZ = �1.90
in the case of gNL, which are both interpreted as weak ev-
idence against these models according to Je↵rey’s scale,
as the two models have odds ⇠ 1 : 5 and 1 : 7 compared
with ⇤CDM respectively given our data [109]. The situ-
ation is more defined for the extended model with both
fNL and gNL: in this case we find � lnZ = �3.18, cor-
responding to odds of 1 : 24, which is seen as moderate
evidence against this model.

We also performed a Bayesian model selection for dark
energy: as shown in Table IV, when using the CMB and
our data this test is inconclusive: � lnZ = �0.90, which
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Table 1. Empirical scale for evaluating the strength of evidence
when comparing two models, M0 versus M1 (so–called “Jeffreys’
scale”). Threshold values are empirically set, and they occur for
values of the logarithm of the Bayes factor of | ln B01| = 1.0,
2.5 and 5.0. The right–most column gives our convention for de-
noting the different levels of evidence above these thresholds.
The probability column refers to the posterior probability of the
favoured model, assuming non–committal priors on the two com-
peting models, i.e. p(M0) = p(M1) = 1/2 and that the two mod-
els exhaust the model space, p(M0|d) + p(M1|d) = 1.

| lnB01| Odds Probability Strength of evidence

< 1.0 ∼
< 3 : 1 < 0.750 Inconclusive

1.0 ∼ 3 : 1 0.750 Weak evidence
2.5 ∼ 12 : 1 0.923 Moderate evidence
5.0 ∼ 150 : 1 0.993 Strong evidence

For λ ! 1, corresponding to a detection of the new parameter at many sigma, the exponential term
dominates and B01 " 1, favouring the more complex model with a non–zero extra parameter, in agreement
with the usual conclusion. But if λ ∼< 1 and σ/Σ " 1 (i.e., the likelihood is much more sharply peaked
than the prior and in the vicinity of 0), then the prediction of the simpler model that θ = 0 has been
confirmed. This leads to the Bayes factor being dominated by the Occam’s razor term, and B01 ≈ Σ/σ, i.e.
evidence accumulates in favour of the simpler model proportionally to the volume of “wasted” parameter
space. If however σ/Σ ! 1 then the likelihood is less informative than the prior and B01 → 1, i.e. the data
have not changed our relative belief in the two models.

Bayes factors are usually interpreted against the Jeffreys’ scale [3] for the strength of evidence, given in
Table 1. This is an empirically calibrated scale, with thresholds at values of the odds of about 3 : 1, 12 : 1
and 150 : 1, representing weak, moderate and strong evidence, respectively. A useful way of thinking of
the Jeffreys’ scale is in terms of betting odds — many of us would feel that odds of 150 : 1 are a fairly
strong disincentive towards betting a large sum of money on the outcome. Also notice from Table 1 that
the relevant quantity in the scale is the logarithm of the Bayes factor, which tells us that evidence only
accumulates slowly and that indeed moving up a level in the evidence strength scale requires about an
order of magnitude more support than the level before.

Bayesian model comparison does not replace the parameter inference step (which is performed within
each of the models separately). Instead, model comparison extends the assessment of hypotheses in the light
of the available data to the space of theoretical models, as evident from Eq. (19), which is the equivalent
expression for models to Eq. (12), representing inference about the parameters value within each model
(for multi–model inference, merging the two levels, see section 6.2).

4.3 Computation and interpretation of the evidence

The computation of the Bayesian evidence (17) is in general a numerically challenging task, as it involves a
multi–dimensional integration over the whole of parameter space. An added difficulty is that the likelihood
is often sharply peaked within the prior range, but possibly with long tails that do contribute significantly
to the integral and which cannot be neglected. Other problematic situations arise when the likelihood is
multi–modal, or when it has strong degeneracies that confine the posterior to thin sheets in parameter
space. Until recently, the application of Bayesian model comparison has been hampered by the difficulty
of reliably estimating the evidence. Fortunately, several methods are now available, each with its own
strengths and domains of applicability.

(i) The numerical method of choice until recently has been thermodynamic integration, also called simu-
lated annealing (see e.g. [11,43,44] and references therein for details). Its computational cost can become
fairly large, as it depends heavily on the dimensionality of the parameter space and on the characteristic
of the likelihood function. In typical cosmological applications [45–47], thermodynamic integration can
require up to 107 likelihood evaluations, two orders of magnitude more than MCMC–based parameter
estimation.

Jeffrey’s scale
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Parameters Data ln(Z) lnB = � ln(Z) Odds Interpretation
⇤CDM CMB + our �3983.41± 0.13 0 — —
+ fNL (‘fair’) �3985.03± 0.13 �1.62± 0.18 1 : 5 Weak evidence against fNL

+ gNL �3985.31± 0.13 �1.90± 0.18 1 : 7 Weak evidence against gNL

+ fNL + gNL �3986.59± 0.13 �3.18± 0.19 1 : 24 Moderate evidence against fNL + gNL

wCDM �3984.31± 0.13 �0.90± 0.18 2 : 5 Inconclusive
⇤CDM CMB alone �3751.37± 0.08 0 — —
wCDM �3751.84± 0.09 �0.47± 0.12 5 : 8 Inconclusive
⇤CDM CMB + SN �4017.15± 0.09 0 — —
wCDM �4019.10± 0.09 �1.95± 0.13 1 : 7 Weak evidence against w

TABLE IV. Bayesian model selection. For each data set we compare models with extra parameters with the baseline ⇤CDM.
We can see that our ‘fair’ data in combination with the CMB provide weak evidence against models with one extra PNG
parameter, and moderate evidence against a more complex model with both fNL, gNL present.

means the odds are 2 : 5 when comparing ⇤CDM with
a wCDM model. The result becomes more defined only
when combining CMB and data from Type Ia Super-
novae: in this case � lnZ = �1.95, interpreted as weak
evidence against the wCDM model.
In general it has to be kept in mind that the Bayesian

selection is a↵ected by the assumed choice of priors, as
the prior normalization implies the evidence is decreased
if the prior range is broader. We have however chosen a
relatively narrow prior on fNL and gNL compared with
existing constraints, meaning we are not unnecessarily
penalizing the evidence for these PNG models.

VI. CONCLUSIONS

Scale dependent bias has arisen as a key means of
detecting primordial non-Gaussianity, but its detection
can be severely compromised by any number of potential
systematics. These, if not accounted for, can introduce
spurious large-scale structure and bias the inferred con-
straints on PNG.
In particular, large di↵erences are observed when com-

paring the MegaZ and CMASS LRG samples, and these
appear to arise mainly from foreground stars which make
the galaxies behind them harder to observe [49]. Ac-
counting for this e↵ect leads to a significant reduction of
large scale power. Similarly, correcting the known dec-
lination dependent systematic in NVSS significantly re-
duces the inferred large-scale structure. Even so, some
large scale power remains in NVSS, but we have shown
that this is potentially due to a similar systematic con-
nected to variations in the mean density as a function
of the right ascension. Finally, while quasar samples
are potentially ideal for searching for primordial non-
Gaussianity, we have confirmed earlier work [55] show-
ing that the quasar auto-correlation measurements are
compromised by systematic errors. In particular, there
are correlations between the mean quasar density and
number of systematics including stellar density, galactic
reddening and sky brightness.
While the existence of such systematics can be discour-

aging, they can often be corrected when they are under-
stood. In addition, cross-correlations between di↵erent
data sets, which should generally contain di↵erent sys-
tematics, o↵er a much more robust means of addressing
the question of primordial non-Gaussianity.

One example of this can be seen in the analysis of cross-
correlations with the CMB, previously analysed in G12.
Comparing the MegaZ and CMASS measurements, the
CMB cross-correlation was seen to be much less a↵ected
than the auto-correlations. While there were di↵erences,
these are partially accounted for by the larger sky cov-
erage of CMASS; the extra area has associated cosmic
variance and is potentially more subject to extinction
systematics. The signal decreased with respect to the
G12 result, but the error bars are also smaller due to the
larger DR8 sky coverage: the total signal-to-noise of this
ISW detection alone is at the 1.8� level, in agreement
with other recent measurements [50]. Similarly, account-
ing for the newly discovered NVSS systematic changes
its cross-correlation somewhat but not dramatically, ac-
tually raising the inferred signal by 20%. However, the
total ISW significance from the combined data is in the
end unchanged with respect to G12, as the increase in
NVSS compensates the decrease in the LRGs.

For our conservative analysis, we excluded all auto-
correlations apart from the CMASS LRGs, but included
CMB cross-correlations which are sensitive to scale-
dependent bias through the ISW e↵ect. We found the
data consistent with the simplest ⇤CDM model in all
cases, and a marginalized interval on PNG of �37 <
fNL < 25 at 95%. This is significantly di↵erent than the
positive signal detected if all possible auto-correlations
are included, as the signal is driven up by the large scale
clustering in the quasar catalog. Including the NVSS
auto-correlation actually broadens the error bar com-
pared to the conservative result, as the survey has some
residual large-scale power even after the corrections for
declination and right ascension dependent mean density.

While measurements of cross-correlations are more ro-
bust, they require more information for their interpre-
tation, in particular understanding the how the sur-
veys overlap in redshift. We treat these uncertainties
by marginalising over nuisance parameters associated

All PNG models are 
disfavoured



Extension to
galaxy clusters

• Largest bound structures

• Probe high-mass tail of mass function dn/
dM (we use Tinker et al. 10 + LoVerde et al. 08)

• High bias: great for PNG

• Observables: 

• Counts Ni in richness bin i (N200: # of 
red galaxies at R < R200)

• nuisance params: L1, L2, σN|M

• Masses from weak lensing data

• nuisance params: β

• Power spectrum

• nuisance params: σz, B, qNL
26

Ni =

Z
dz

Z
dN200

dn

dM

dM

dN200
w(N200)

mass function Jacobian
of scaling

relationship

richness
bin 

selection

P (k) = b2e↵(1 + qNLk
3/2)f(k)Plin(k)

simple non-lin model photo-z smoothing

[A. Mana, TG, et al. 13, MNRAS accepted]
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Counts+Masses: agree with Rozo et al. 09
adding PS: significant improvement!

• 14,000 clusters to z < 0.3 from 
SDSS-DR7 [Koester et al. 07]

• Data and covariances:
• Counts by Rozo et al. 09

• Masses by Johnston et al. 07

• P(k) by Huetsi 09

• MCMC analysis over:
• Cosmology (σ8, Ωm, fNL)
• Nuisance parameters (L1, L2, σN|M, 
β, σz, B, qNL)

Cosmology with 
MaxBCG
[A. Mana, TG, et al. 13]
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Figure 6.Marginalised posterior probability distributions on the parameters
Ωm − σ8 for the runs using Counts only (blue), Counts+P(k) (green) and
Counts+P(k)+CMB (orange), at 68% and 95% confidence levels.
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Figure 7. Constraints on the scaling relation parameters for the runs using
Counts only (blue), Counts+P(k) (green) and Counts+P(k)+CMB (or-
ange), at 68% and 95% confidence levels. Notice that lnN1 ≡ ln Ngal|M1
and ln N2 ≡ ln Ngal |M2, where M1 = 1.3 · 1014M# and M2 = 1.3 · 1015M#.

the peak of the power spectrum decreases (increases) while also be-
ing shifted to higher (lower) values of k, while σ8 simply changes
the overall normalisation. As described above, an increase in fNL
causes a boost in the power spectrum on large scales (small k), so
thatσ8 needs to decrease to compensate a higher fNL: this is exactly
what is shown in Fig. 9. In addition to this Ωm should increase to
compensate a higher fNL: this can be seen in Fig. 8. We also see
that the addition of the CMB power spectrum data improves the
constraints on Ωm and σ8 and only indirectly reduces the bounds
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Figure 8. Marginalised posterior probability distributions on the parame-
ters fNL − Ωm for the runs using Counts with fNL (blue), Counts+P(k)
with fNL (green) and CMB+clusters with fNL (orange), at 68% and 95%
confidence levels.
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Figure 9. Marginalised posterior probability distributions on the fNL − σ8
plane for the runs including Counts with fNL (blue), Counts+P(k) with
fNL (green) and CMB+clusters with fNL (orange), at 68% and 95% confi-
dence levels.

on fNL, since PNG simply affects the higher-order statistics of the
CMB.

Our constraints on PNG are fNL = 12 ± 157 (1σ) (without
CMB) and fNL = 194 ± 128 (with CMB), which are statistically
compatible with zero and with each other. The shift in the mean be-
tween the two results is clear by looking at Figs. 8, 9: the addition
of the CMB favours lower values of σ8 (and higher values of Ωm),
thus shifting the favoured fNL values in the process. While not com-
petitive with results from the CMB bispectrum or from combined
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the uncertainty on our assumption of a mass function, we also in-
troduce a nuisance parameter B as in Section 3.4, which rescales
the bias as bobs =  b · B.

The scale-independent correction δb( fNL) is small, easily con-
fused with other normalisation effects, and relies on the assumed
form of the mass function and the peak-background split method.
For these reasons, it is worth ensuring that the results do not depend
on this contribution. We make sure this happens in our case because
any constant rescaling of the bias can be equally explained by ei-
ther a change in the nuisance parameter B or a change in fNL. But
since a model with fNL ! 0 also predicts the scale-dependent bias,
it will be favoured only in case such a feature is indeed observed
in the data, otherwise the B ! 1 model will be assigned a better
likelihood. In practice, we impose some Gaussian priors centred on
B = 1, but we have checked that the results on fNL do not depend
significantly on this choice.

We show in Fig. 5 the full power spectrum P̃obs(k) in the pres-
ence of PNG for a choice of fNL values, compared with the data.
The scale-dependent bias induced by PNG is visible on large scales
(small k), while the smaller scale-independent contribution can be
seen on small scales (large k). Note that the survey window con-
volution of Eq. (19) partially suppresses the effect of PNG on the
largest scales, which become comparable with the survey volume.

4 LIKELIHOOD ANALYSIS AND RESULTS

We use cluster counts, WL masses and the cluster power spectrum
to fit the richness-mass relation and constrain cosmology simulta-
neously. In particular, our observables are:

(1) Cluster counts ∆N, divided into 10 richness bins;
(2) Total mass of clusters ∆N  M, divided into 6 richness bins;
(3) Cluster power spectrum P̃obs, divided into 18 k bins.

The covariance matrix we use for the cosmological analysis is com-
posed by the parts discussed in Section 2. In addition to the cluster
data we also use the CMB power spectra from WMAP7 (Larson
et al. 2011), in the cases specified below.

We assume a flat ΛCDM cosmological model. When using
cluster data alone we fix the Hubble parameter h = 0.7, primordial
spectral index ns = 0.96 and baryon density Ωb = 0.044, as these
parameters are not easily constrained in this case; we relax these
assumptions when adding external CMB data. Note that we need to
fix the spectral index of scalar density perturbations because of the
small range in scale which our mass range corresponds to.

We then perform Bayesian parameter estimation by running
Monte Carlo Markov Chains (MCMCs), using Metropolis sam-
pling with a modified version of the COSMOMC code (Lewis &
Bridle 2002). In Table 1 we list all the parameters of the analysis,
including their assumed priors. We estimate the posterior probabil-
ity distributions in the following cases:

(i) Counts only: 6 free parameters [Ωc, log(1010As), lnN1,
lnN2, σlnM|Nobs

gal
, β], without the cluster power spectrum;

(ii) Counts with fNL: 7 free parameters [Ωc, log(1010As), lnN1,
lnN2, σlnM|Nobs

gal
, β, fNL], without the cluster power spectrum;

(iii) Counts+P(k): 9 free parameters [Ωc, log(1010As), lnN1,
lnN2, σlnM|Nobs

gal
, β, qNL, σz, B], with the cluster power spectrum;

(iv) Counts+P(k) with fNL: 10 free parameters [Ωc,
log(1010As), lnN1, lnN2, σlnM|Nobs

gal
, β, qNL, σz, B, fNL], with

the cluster power spectrum;
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Figure 6. Marginalised posterior probability distributions on the parame-
ters Ωm − σ8 for the runs using Counts only (blue), Counts+P(k) (green)
and Counts+P(k)+CMB (orange), at 68% and 95% confidence levels. The
yellow contours show the joint constraints in the case of P(k) data only.

(v) CMB only: 7 free parameters [Ωb, h, τ, ns, Asz, Ωc,
log(1010As)], with CMB data only;

(vi) CMB+clusters: 14 free parameters [Ωb, h, τ, ns , Asz, Ωc,
log(1010As), lnN1, lnN2, σlnM|Nobs

gal
, β, qNL, σz, B], with CMB and

all cluster data;
(vii) CMB+clusters with fNL: 15 free parameters [Ωb, h, τ, ns ,

Asz,Ωc, log(1010As), lnN1, lnN2, σlnM|Nobs
gal

, β, qNL, σz, B, fNL], with
CMB and all cluster data.

4.1 Results

We summarise our results in Table 2, and we show in Figs. 6, 7, 8,
9 and 10 the 2D 68% and 95% marginalised confidence regions for
different pairs of parameters in our analysis. The color scheme is
the same for all figures: blue contours refer to runs with counts and
WL mean masses data only, green contours include in addition the
cluster power spectrum data, while orange contours also include
CMB data from WMAP7.

The joint constraint in the Ωm − σ8 plane in Fig. 6 dis-
plays the typical degeneracy from cluster counts: the counts
increase with increasing Ωm and σ8 values, hence any increase
in Ωm must be balanced by a decrease in σ8 (and viceversa),
to keep the abundances at the observed values. The constraints
on individual parameters with counts and masses only are con-
sistent with Rozo et al. (2010), and we find Ωm = 0.25 ± 0.06,
σ8 = 0.80 ± 0.06 (1σ errors throughout), while the errors are
improved by a factor between 1.5 and 3, depending on the
parameter, when adding the maxBCG power spectrum: in this case
we obtain Ωm = 0.215 ± 0.022, σ8 = 0.84 ± 0.04. Combining
then these results with the CMB data, the constraints shrink to
Ωm = 0.255 ± 0.014 and σ8 = 0.790 ± 0.016: the contribution
of the CMB tightens the errors by a further factor of two. As an
interesting comparison, we show also the joint constraints for the
case of P(k) data only (yellow contours), with a prior on the scaling
relation parameters: the degeneracy direction is complementary

© 2013 RAS, MNRAS 000, 1–12
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Figure 6.Marginalised posterior probability distributions on the parameters
Ωm − σ8 for the runs using Counts only (blue), Counts+P(k) (green) and
Counts+P(k)+CMB (orange), at 68% and 95% confidence levels.
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Figure 7. Constraints on the scaling relation parameters for the runs using
Counts only (blue), Counts+P(k) (green) and Counts+P(k)+CMB (or-
ange), at 68% and 95% confidence levels. Notice that lnN1 ≡ ln Ngal|M1
and ln N2 ≡ ln Ngal |M2, where M1 = 1.3 · 1014M# and M2 = 1.3 · 1015M#.

the peak of the power spectrum decreases (increases) while also be-
ing shifted to higher (lower) values of k, while σ8 simply changes
the overall normalisation. As described above, an increase in fNL
causes a boost in the power spectrum on large scales (small k), so
thatσ8 needs to decrease to compensate a higher fNL: this is exactly
what is shown in Fig. 9. In addition to this Ωm should increase to
compensate a higher fNL: this can be seen in Fig. 8. We also see
that the addition of the CMB power spectrum data improves the
constraints on Ωm and σ8 and only indirectly reduces the bounds
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Figure 8. Marginalised posterior probability distributions on the parame-
ters fNL − Ωm for the runs using Counts with fNL (blue), Counts+P(k)
with fNL (green) and CMB+clusters with fNL (orange), at 68% and 95%
confidence levels.
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Figure 9. Marginalised posterior probability distributions on the fNL − σ8
plane for the runs including Counts with fNL (blue), Counts+P(k) with
fNL (green) and CMB+clusters with fNL (orange), at 68% and 95% confi-
dence levels.

on fNL, since PNG simply affects the higher-order statistics of the
CMB.

Our constraints on PNG are fNL = 12 ± 157 (1σ) (without
CMB) and fNL = 194 ± 128 (with CMB), which are statistically
compatible with zero and with each other. The shift in the mean be-
tween the two results is clear by looking at Figs. 8, 9: the addition
of the CMB favours lower values of σ8 (and higher values of Ωm),
thus shifting the favoured fNL values in the process. While not com-
petitive with results from the CMB bispectrum or from combined

© 2013 RAS, MNRAS 000, 1–12

Combining clustering and abundances of galaxy clusters 9

Ωm

σ
8

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Counts only

Counts+P(k)

Counts+P(k)+CMB

Figure 6.Marginalised posterior probability distributions on the parameters
Ωm − σ8 for the runs using Counts only (blue), Counts+P(k) (green) and
Counts+P(k)+CMB (orange), at 68% and 95% confidence levels.
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Figure 7. Constraints on the scaling relation parameters for the runs using
Counts only (blue), Counts+P(k) (green) and Counts+P(k)+CMB (or-
ange), at 68% and 95% confidence levels. Notice that lnN1 ≡ ln Ngal|M1
and ln N2 ≡ ln Ngal |M2, where M1 = 1.3 · 1014M# and M2 = 1.3 · 1015M#.

the peak of the power spectrum decreases (increases) while also be-
ing shifted to higher (lower) values of k, while σ8 simply changes
the overall normalisation. As described above, an increase in fNL
causes a boost in the power spectrum on large scales (small k), so
thatσ8 needs to decrease to compensate a higher fNL: this is exactly
what is shown in Fig. 9. In addition to this Ωm should increase to
compensate a higher fNL: this can be seen in Fig. 8. We also see
that the addition of the CMB power spectrum data improves the
constraints on Ωm and σ8 and only indirectly reduces the bounds
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Figure 8. Marginalised posterior probability distributions on the parame-
ters fNL − Ωm for the runs using Counts with fNL (blue), Counts+P(k)
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confidence levels.
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Figure 9. Marginalised posterior probability distributions on the fNL − σ8
plane for the runs including Counts with fNL (blue), Counts+P(k) with
fNL (green) and CMB+clusters with fNL (orange), at 68% and 95% confi-
dence levels.

on fNL, since PNG simply affects the higher-order statistics of the
CMB.

Our constraints on PNG are fNL = 12 ± 157 (1σ) (without
CMB) and fNL = 194 ± 128 (with CMB), which are statistically
compatible with zero and with each other. The shift in the mean be-
tween the two results is clear by looking at Figs. 8, 9: the addition
of the CMB favours lower values of σ8 (and higher values of Ωm),
thus shifting the favoured fNL values in the process. While not com-
petitive with results from the CMB bispectrum or from combined
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fNL = 12 ± 157 (1σ)

• From cluster data alone:

• Mass function sensitive to ALL 
types of PNG

[See also Shandera et al. 13]



Primordial NG with DES and Euclid

• Combining: lensing + galaxy 
clustering

• Following Hu & Jain 04

• Including primordial non-Gaussianity 

• DES: Fermilab-led mission
• Taking data now in Chile
• Photo-z, deep to z~1.5
• 300 M galaxies
• 5,000 sq. deg

• Euclid: approved ESA mission
• In L2 orbit, launch ~2019
• Imaging (vis+IR): 2 bn galaxies 
• Slitless spectra: 80 M galaxies
• 15,000-20,000 sq. deg
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[TG et al. 11 MNRAS]



Results
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[Hu & Jain 04]

• Combined lensing + 2D gal 
spectrum Fisher forecast:

• includes ⟨lens-gal⟩ spectrum

• Red: with Planck TT priors

• Euclid accuracy on local fNL: ±3

• DES: accuracy on fNL ~ ±8

• Running: nfNL ~ ±0.12 if fNL = 30

• Main issue will be systematics!

[TG et al. 11 MNRAS]
Critical assumpion for fNL: bfiducial (z) ~ (1+z)1/2, 

similar to Orsi et al. 09.



BOSS DR9
[Ross et al. 12]

Subtraction of 
systematics

Conclusions & Future Work

• Extended analysis of PNG with latest combined LSS+ISW data

• NO non-Gaussianity:  -6 ± 15  (1σ): simplest inflation is OK

• Systematics a big issue in ACFs: any evidence of PNG should be confirmed 
by cross-correlations between independent data

31

• Planck bispectrum: fNL = 2.7 ± 5.8  (1σ)

• DES:  fNL ± 8    [TG et al. 11]                                                   
for DE: gal-gal, CMB-gal, CMB-shear

• HETDEX: High z, Lyman-α survey: 3-point

• Euclid: fNL ± 3 ... if systematics under control


