Non-Isentropic Inflation Models and Constraints from $$\rm CMBR^{1}$$

Rudnei O. Ramos

Rio de Janeiro State University Department of Theoretical Physics

> EPI 2013 Santander, Spain

> > June 24 - 27, 2013

¹ROR and L. A. da Silva, JCAP 03 (2013) 032; ROR, I. G. Moss, A. Berera and M. Basteiro-Gil, J. Rosa, work in progress

1 Observables in Inflation

- 2 Cold Inflation
- 3 Warm Inflation
- 4 CMB Observables for Warm Inflation
- 5 Summary

Cosmological Inflation

 $\ddot{a} > 0$, $p < -\rho/3 \Rightarrow$ Inflation

Relevent cosmological parameters for inflation:

Curvature perturbations:

$$\Delta_R^2 = \Delta_R^2(k_0) \left(rac{k}{k_0}
ight)^{n_s-1}, \ \ ext{amplitude} = \Delta_R^2(k_0)$$

Spectral index:

$$h_s - 1 = rac{d \ln \Delta_R^2}{d N_e} = rac{d \ln \Delta_R^2}{d \ln k}$$

Tensor to scalar curvature perturbation ratio:

$$r = \frac{\Delta_T^2}{\Delta_R^2}$$

NonGaussianity:

$$egin{aligned} &\langle \Phi(\mathbf{k}_1) \Phi(\mathbf{k}_2) \Phi(\mathbf{k}_3)
angle = (2\pi)^3 \delta^{(3)} (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_{\Phi}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \ & B_{\Phi}(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = f_{NL} \; F(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) \end{aligned}$$

Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r_{0.002} from Planck in combination with other data sets compared to the theoretical predictions of selected inflationary models.

Cold Inflation^a:

^a(Starobinsky '80; Guth '81; Albrecht, Steinhardt '82; Linde '82)

Inflaton \implies Reheating \implies Radiation \implies Matter

Inflaton interactions with other d.o.f. only important during reheating

$$\dot{
ho}_r + 4H
ho_r = 0, \quad (H = \dot{a}/a \sim cte)$$

⇒ The radiation density during inflation redshifts away: $\rho_r \sim 1/a^4$ ⇒ density perturbations sourced by inflaton's quantum fluctuations If the universe did not supercool, then...

Warm Inflation^a:

Inflaton \implies Decay \implies Radiation \implies Matter

Inflaton interactions with other d.o.f. is important during inflation generate dissipation/viscosity terms \Rightarrow small fraction of vacuum energy density can be converted to radiation

$$\dot{\rho}_r + 4H\rho_r = \Upsilon \dot{\phi}^2$$

 \Rightarrow The radiation density during inflation stabilises: $\Rightarrow \rho_r \sim \Upsilon \dot{\phi}^2/(4H)$

Warm Inflation

 The production of radiation is associated with a friction term in the inflaton equation,

$$\ddot{\phi} + 3H\dot{\phi} + \Upsilon\dot{\phi} + V_{\phi} = 0,$$

- $\Upsilon \phi$ describes how inflaton's interactions with other fields backreact on the inflaton dynamics.
- Effectiveness of warm inflation measured by $Q = \frac{\Upsilon}{3H}$
- Cold or warm inflation: $T \ll H$ or $T \gtrsim H$
- adiabatic density fluctuations are sourced by thermal fluctuations: amplitude² $\delta \phi^2 = (H\Upsilon)^{1/2}T$, density fluctuations $\zeta = H\delta \phi/\dot{\phi}$. CMB amplitude $\Delta_R^2(k_0) = (2.41 \pm 0.10) \times 10^{-9}$ (WMAP Nine-year Mean) fixes the energy scale V.

²for $T \gg H, Q \gg 1$, Hall, Moss, Berera 2004

Microscopic basis for warm inflation⁴

Two-stage reheating:

$$\begin{array}{cccc} \phi & \longrightarrow & \chi, \psi_{\chi} & \longrightarrow & \psi_{\sigma}, \sigma \\ \text{inflaton} & \text{heavy field} & \text{light fermions or scalars} \end{array}$$

for example : $\mathcal{L}_I = -\frac{1}{2}g_{\chi}^2\phi^2\chi^2 - g_{\psi}\phi\bar{\psi}_{\chi}\psi_{\chi} - h_{\sigma}M\chi\sigma^2 - h_{\psi}\chi\bar{\psi}_{\sigma}\psi_{\sigma}$

- decouple the radiation from the inflaton $(m_{\chi}, m_{\psi_{\chi}} \gg T, m_{\sigma,\psi_{\sigma}} \ll T)$
- couplings between fields of order 0.1
- SUSY to reduce vacuum corrections, e.g., $W = g \Phi X^2 + h X Y^2$

Typically³ (c + 2a - 2b = 1, low-T: c = 3, high-T: c = -1 or no T: c = 0):

$$\Upsilon = C_{\phi} rac{T^c \phi^{2a}}{m_X^{2b}} \sim C_{\phi} rac{T^c}{\phi^{c-1}},$$

Let $\phi \equiv \phi(\mathbf{x}, t)$ and average out (integrate over) the other fields. This gives a stochastic (Langevin-like) system⁵, $\ddot{\phi}(\mathbf{x}, t) + 3H\dot{\phi}(\mathbf{x}, t) + \int d^4x' \Sigma_R(x, x')\phi(x') + V_{,\phi} - \frac{1}{a^2} \nabla^2 \phi(\mathbf{x}, t) = \xi(\mathbf{x}, t).$

The self-energy contribution is a dissipative term (in the adiabatic approximation, $\dot{\phi}/\phi$, H, $\dot{T}/T < \Gamma_{\chi} \approx h^2 m_{\chi}/(8\pi))^6$,

 $\int d^4 x' \Sigma_R(x, x') \phi(x') \approx \Upsilon \dot{\phi}(x, t)$

$$\ddot{\phi}(x,t)+(3H+\Upsilon)\dot{\phi}(x,t)+V_{\phi}-rac{1}{a^2}
abla^2\phi(x,t)=\xi_T(x,t).$$

We have a spatial gradient term, a scale factor a, and a stochastic thermal source ξ_T . The source has a gaussian distribution with local correlation function

$$\langle \xi_T(\mathbf{x},t)\xi_T(\mathbf{x}',t')\rangle = a^{-3}\Upsilon T\delta(\mathbf{x}-\mathbf{x}')\delta(t-t')$$

⁵M. Gleiser and ROR, PRD50, 2441 (1994)

⁶A. Berera, I. G. Moss and ROR, PRD76, 083520 (2007)<u>→ ←⊖→ ←∋→ ←∋→ →</u> = →

Including quantum fluctuations (A.A. Starobinsky 1988, Stochastich

$$\Phi(ec{x},t)
ightarrow \Phi_{>}(ec{x},t) + \Phi_{<}(ec{x},t)$$
 .

- $\Phi_{>}(\vec{x}, t) \rightarrow$ long wavelenght (super horizon) part
- $\Phi_{\leq}(\vec{x},t) \equiv \phi_{a}(\vec{x},t) \rightarrow$ summarizes high frequency, short-wavelength (sub horizon) quantum fluctuations $(k > k_h \approx aH)$:

$$\Phi_{<}(\mathbf{x},t) \equiv \phi_{q}(\mathbf{x},t) = \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3/2}} W(k,t) \left[\phi_{\mathbf{k}}(t) e^{-i\mathbf{k}\cdot\mathbf{x}} \hat{a}_{\mathbf{k}} + \phi_{\mathbf{k}}^{*}(t) e^{i\mathbf{k}\cdot\mathbf{x}} \hat{a}_{\mathbf{k}}^{\dagger} \right]$$

W(k, t) is a filter or window function that projects out the long wavelength modes.

Backreaction of $\Phi_{<}$ into the dynamics of local order parameter $\Phi_{>}$

↓ modelled as a (quantum) noise term

combine with the derivation in the warm inflation context⁷

$$\left[\frac{\partial^2}{\partial t^2} + (3H + \Upsilon)\frac{\partial}{\partial t} - e^{-2Ht}\nabla^2\right]\Phi_>(\vec{x}, t) + \frac{\partial V(\Phi_>)}{\partial \Phi_>} = \xi_q(\vec{x}, t) + \xi_T(\vec{x}, t) ,$$

quantum noise:
$$\xi_q = -\left[\frac{\partial^2}{\partial t^2} + 3H\frac{\partial}{\partial t} - \frac{1}{a^2}\nabla^2 + V_{,\phi\phi}(\Phi_{>})\right]\phi_q$$

 \Rightarrow Eq. for $\Phi_{>}$ is similar to a Langevin equation with quantum and thermal noise terms (stochastic process w/ gaussian noises).

⁷ROR and L. A. da Silva, JCAP 03 (2013) 032

Equation for the fluctuations:

 $\delta \ddot{\varphi}(\vec{k},t) + (3H + \Upsilon)\delta \dot{\varphi}(\vec{k},t) + V_{,\phi\phi}(\phi)\delta \varphi(\vec{k},t) + a^{-2}k^2\delta \varphi(\vec{k},t) = \tilde{\xi}_{T}(\vec{k},t) + \tilde{\xi}_{q}(\vec{k},t) .$

General solution can be expressed in terms of a Green function $\delta\varphi(\mathbf{k},z) = \int_{z}^{\infty} dz' G(z,z') \frac{(z')^{1-2\nu}}{z'^{2}H^{2}} \left[\tilde{\xi}_{q}(z') + \xi_{T}(z') \right], \quad (z \equiv \frac{k}{aH}),$

$$G(z,z') = \frac{\pi}{2} z^{\nu} z'^{\nu} \left[J_{\alpha}(z) Y_{\alpha}(z') - J_{\alpha}(z') Y_{\alpha}(z) \right] , z' > z$$

$$\nu = 3(1+Q)/2 , \quad \alpha = \sqrt{\nu^2 + \frac{3\beta Q}{1+Q} - 3\eta}$$
$$\varepsilon = \frac{1}{16\pi G} \left[\frac{V_{,\phi}}{V}\right]^2 , \quad \eta = \frac{1}{8\pi G} \frac{V_{,\phi\phi}}{V} , \quad \beta = \frac{1}{8\pi G} \frac{\Upsilon_{,\phi} V_{,\phi}}{\Upsilon V}$$

slow-roll coefficients: $\varepsilon, \eta, \beta \ll 1 + Q$, $Q = \Upsilon/(3H)$

1 / **2** /

Thermal ξ_T and quantal ξ_q noises are uncorrelated (decoupled), so they give separated contributions to the power spectrum:

$$P_{\delta arphi}(z) = rac{k^3}{2\pi^2} \int rac{d^3k'}{(2\pi)^3} \langle \delta arphi({f k},z) \delta arphi({f k}',z)
angle = P^{
m (th)}_{\delta arphi}(z) + P^{
m (qu)}_{\delta arphi}(z)$$

Explicitly, we find:

$$egin{split} \mathcal{P}^{(ext{qu})}_{\deltaarphi}(z) &\simeq \left[rac{2}{\exp(H/T)-1}+1
ight]rac{z^{3-2\mu}H^2}{4\pi^2}\,, \ \ \mu &= \sqrt{9/4-3\eta} \ \mathcal{P}^{(ext{th})}_{\deltaarphi}(z) &\simeq rac{\Upsilon T}{16\pi^2}z^{2
u-2lpha}rac{[2^
u\Gamma(
u)]^2\,\Gamma(
u-1)}{\Gamma(2
u-1/2)\Gamma(
u-1/2)}\,, \ \
u &= 3(1+Q)/2 \ \mathcal{P}^{(ext{th})}_{\deltaarphi}(z) &\simeq 3(1+Q)/2 \ \mathcal{P}^{(ext{th})}_{\deltaarphi}(z) &$$

Conventional inflation: $P_{\delta\varphi}(T/H \to 0) \to \frac{H^2}{4\pi^2}$

ϕ^4 potential ($Q = \Upsilon/(3H)$):

dashed lines: $N_* = 50$ -efolds, solid lines: $N_* = 60$ -efolds dot: T/H = 100, 10, 1, $\rho_{rad} \sim g_* \pi^2 T^4/30$ $(W = g \Phi X^2 + h X Y^2)$ Green: $g_* = 15/4$ ($N_Y = 1$), Black: $g_* = 228.75$ (*MSSM*)

(4日) 4回) 4回) 4回) 回日

dots, stars: Q = 50, 25, 1, solid line: $g_* = 15/4$ ($N_Y = 1$), dashed line: $g_* = 228.75$ (MSSM)

Warm inflation can also provide the conditions for baryogenesis (assuming B- and CP-violation in the interactions between the heavy and the light fields)⁸

 \Rightarrow thermal fluctuations of the inflaton field will be imprinted on the baryon-to-entropy ratio

⇒ generates baryon isocurvature perturbations: $B_B = (\delta \eta_s / \eta_s) / \zeta$ (where $\eta_s = n_B / s$, is the baryon-to-entropy ratio $\zeta = -H\delta \rho / \dot{\rho}$) correlated with adiabatic perturbations:

$$B_B\simeq -0.119, \quad n_{
m iso}\simeq 1.02$$

(Planck: $|B_B| \lesssim 0.51$)

⁸M. Basteiro-Gil, A. Berera, R.O.R., J. G. Rosa, PLB 712 (2<u>012)</u> 425 😪 💷 👘

• Warm inflation fully includes the effects of interactions in the inflaton dynamics

⁹(M. Basteiro-Gil, A. Berera, I. Moss, ROR, to appear), □ → (□)

- Warm inflation fully includes the effects of interactions in the inflaton dynamics
- Warm inflation \rightarrow dissipation mechanisms \rightarrow radiation production
 - \rightarrow backreaction effect on the power spectrum

- Warm inflation fully includes the effects of interactions in the inflaton dynamics
- Warm inflation \to dissipation mechanisms \to radiation production \to backreaction effect on the power spectrum
- Thermal fluctuations bring $\lambda \phi^4$ model back to business: Both n_s and r restricts warm inflation to a region: $T/H\gtrsim 1$ and for $\Upsilon/(3H)\lesssim 1$, (high-T, low dissipation regime)

⁹⁽M. Basteiro-Gil, A. Berera, I. Moss, ROR, to appear), 🖬 🗸 🚓 👘 👘 👘

- Warm inflation fully includes the effects of interactions in the inflaton dynamics
- Warm inflation \rightarrow dissipation mechanisms \rightarrow radiation production \rightarrow backreaction effect on the power spectrum
- Thermal fluctuations bring $\lambda \phi^4$ model back to business: Both n_s and r restricts warm inflation to a region: $T/H\gtrsim 1$ and for $\Upsilon/(3H)\lesssim 1$, (high-T, low dissipation regime)
- nongaussianities should further constrain warm inflation models⁹ (expected to be true also for cold inflation models)

Planck Collaboration: Planck 2013 Results. XXIV. Constraints on primordial NG

Warm inflation: This model, where dissipative effects are important, predicts $f_{\rm NL}^{\rm warm} = -15 \ln (1 + r_d/14) - 5/2$ (Moss & Xiong 2007) where the dissipation parameter $r_d = \Gamma/(3H)$ must be large for strong dissipation. The limit from *WAAP* is $r_d \le 2.8 \times 10^4$ (Moss & Xiong 2007). Assuming a prior $0 \le \log_{10} r_d \le 4$, our constraint $f_{\rm NL}^{\rm warmS} = 4 \pm 33$ at 68% CL (see Sect. 7.3.5) yields a limit on the dissipation parameter of $\log_{10} r_d \le 2.6$ (95% CL), improving the previous limit by nearly two orders

⁹(M. Basteiro-Gil, A. Berera, I. Moss, ROR, to appear). □ > (@> (@> (@> (@>)