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Probing the early universe

time

energy scale

・Cosmological perturbation

・Quantum field theory

the bulk action Sbulk with respect to the boundary metric. This differs from the notation
we are using here by a factor of i, since in the semiclassical limit WQFT ∼ −iSbulk (see
Eq. (2.6) ).

When we assume the Friedmann equation as the bulk evolution equation and neglect
the quantum corrections to the beta function, the beta function β is given in terms of the
slow-roll parameter ε as

β2 # (λu)2 # 2ε (4.12)

at the leading order of the deformation from the conformal field theory [26, 27]. If we use
these expressions (4.11) and (4.12), Eq. (4.10) reproduces the well-known power spectrum
obtained in a weakly-coupled inflation driven by a single scale field:

P (k) ∝ 1
ε

(
H

Mpl

)2 1
k3

(4.13)

with H ∝ 1/RdS.
Here, we have related the spectrum of ζ to the two point function of an operator

that lives at the future boundary. This is in contrast with the approach by McFadden
and Skenderis, who considered the primordial spectra of ζ in the context of the domain-
wall/cosmology correspondence [13, 14, 15, 16, 17, 18]. The present formalism can be
applied also to the domain wall space, and the distribution function of the bulk field in the
domain-wall space is still given by the same expressions. (For instance, the formula for the
vertex function given by Eqs. (2.18) and (3.10) still holds.)

4.2 The bi-spectrum

Next, we calculate the non-Gaussian spectrums of the primordial curvature perturbation
ζ(x). The bi-spectrum for ζ(x) is expressed by the cubic interaction W (3)(x1, x2, x3) as

〈ζ(x1)ζ(x2)ζ(x3)〉conn = −
∫ 3∏

i=1

d3yi W
(2)−1(xi , yi) W (3)(y1, y2, y3) , (4.14)

where using Eqs. (2.18) and (3.11), we obtain

W (3)(x1, x2, x3) = −2Re
[
(λu)3〈O(x1)O(x2)O(x3)〉u

− λ3u2{δ(x1 − x2)〈O(x2)O(x3)〉u + (2 cyclic perms)}
]
.

(4.15)

In Eq. (4.14), we noted that W (3)(x1, x2, x3) is symmetric under an exchange of the argu-
ments x1, x2, and x3. The expression of Eq. (4.14) can be diagrammatically understood
as in Fig. 1. Performing the Fourier transformation, the bi-spectrum for ζ(k) is given by

〈ζ(k1)ζ(k2)ζ(k3)〉conn = (2π)3δ(k1 + k2 + k3) B (k1, k2, k3) (4.16)
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AdS/CFT correspondence
Maldacena (97)

Classical type IIB SUGRA on AdS5×S5 in 10D

Duality

・ SO(2,4) × SO(6) symmetry

・ Correlation functions in CFT from gravity

(N � 1, Ngs � 1)

Gubser, Klebanov, Polyakov (98), Witten(98)

 SU(N) super Yang-Mills theory in 4DN = 4

Zbulk [Φ(z,x)|z=0] =
�
e−

R
d
4xΦ(x)O(x)

�

CFT
≡ ZCFT



Gauge/Gravity correspondence

Holographic principle suggests that a gravity theory should 
be related to a non-gravitational theory in one fewer dimension.

・Holographic principle ‘t Hooft(92), Susskind(95)

+ RG flow
d-dim gauge theory (d+1)-dim gravity theory

・Non-trivial duality Maldacena (97)

‘tHooft coupling λ λ=(r0/ls)4 Curvature scale r0

 Strong coupling

Boundary CFT Bulk gravity

 λ ≫1, r0 ≫ ls  Weak coupling

 Weak coupling  Strong coupling λ ≪1, r0 ≪ ls 



dS/CFT

Strominger(01), Witten(01)
・CFT lives on the spacelike boundary

at the future infinity of dS.

Holography for dS

・Wave function from CFT

ΨdS[g]=ZCFT

Maldacena(02)

Strominger et al.(11)- dS/CFT, Higher spin gravity 

- dS/dS Alishalia, Karch, Silverstein,...(04)

- DW/Cosmology McFadden, Skenderis, ...(09)

Inflationary spacetime  ~  de Sitter (dS) spacetime



AdS and dS
de Sitter (dS)Anti de Sitter (AdS)

Vacuum with Λ < 0 Vacuum with Λ > 0

in R2,3 (-,-, +, +, +) in R1,4  (-,+, +, +, +) SO(1,4)SO(2,3)
-X0 2-X1 2+Σ Xa2= - A2

a=2,3,4
-X0 2+X1 2+Σ Xa2= A2

a=2,3,4

z=0

z=-∞ z:const, R3

η=0

η=-∞

η:const, R3

lAdS        ildS 
z        iη
t        -iw

Boundary

ds2 = l2AdS

�
−dt2 + dx2 + dy2 + dz2

z2

�
ds2 = l2dS

�
−dη2 + dx2 + dy2 + dw2

η2
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Inflation

de Sitter space

(ex)CFT+ mass

Deformed CFT

CFT on R3

4D hyperboloid:

in 5D flat spacetime R1,4

ds
2
4 = {ηµνX

µ
X

ν = H
−2}

SO(1,4)

Breaking symmetry

・Poincare T.

・Dilatation

・Special C.T.

Breaking dS sym. Breaking CS



Inflation from holography

a(t) ~ eHt

<ζ(t,x)ζ(t,y)>,
 <ζ (t,x) ζ (t,x) ζ (t,z) >, ...

t

RG flow

@energy scale µ

<O(x)O(y)>, 
<O(x)O(y)O(z)>, ...

Geometry (bulk) Field theory

Strongly coupled limit

xi

curvature scale ≪ string scale ls

Weakly coupled limit



Inflation from holography

Basic assumption

dS → quasi dS                        CFT → deformed CFT
Breaking SO(1,4) 

Strongly coupled New!!

ΦInflaton External field

a(t) ∝ µ ↗Expansion of universe RG flow: IR to UV

Weakly coupled  SPT

Weakly coupled

Strongly coupled r0 ≫ ls, λ ≫1 

 r0 ≪ ls, λ ≪1

(FP)(Inflation) (Near FP)

ΨqdS[g, Φ] =
�
e−

R
d
3xΦ(x)O(x)

�

dCFT



Progresses so far
Weakly coupled limit in the bulk 

・Power spectrum
Maldacena (02), Larsen et al. (02)van der Schaar(03),...

・Consistency relation

Strongly coupled limit in the bulk 

Maldacena (02), Larsen & McNees(03),...

the bulk action Sbulk with respect to the boundary metric. This differs from the notation
we are using here by a factor of i, since in the semiclassical limit WQFT ∼ −iSbulk (see
Eq. (2.6) ).

When we assume the Friedmann equation as the bulk evolution equation and neglect
the quantum corrections to the beta function, the beta function β is given in terms of the
slow-roll parameter ε as

β2 # (λu)2 # 2ε (4.12)

at the leading order of the deformation from the conformal field theory [26, 27]. If we use
these expressions (4.11) and (4.12), Eq. (4.10) reproduces the well-known power spectrum
obtained in a weakly-coupled inflation driven by a single scale field:

P (k) ∝ 1
ε

(
H

Mpl

)2 1
k3

(4.13)

with H ∝ 1/RdS.
Here, we have related the spectrum of ζ to the two point function of an operator

that lives at the future boundary. This is in contrast with the approach by McFadden
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wall/cosmology correspondence [13, 14, 15, 16, 17, 18]. The present formalism can be
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4fNL � −(ns − 1)

 ・Bi-spectrum

Lidsey & Seery (06)

???
cf. DW/Cosmology McFadden, Skenderis, ...(09)



Deformed CFT
dCFT, dual to single field inflation Mpl = 1

RG flow

SdCFT = SCFT +
�

d
3x
√

gµ
−(∆c−3)φO

β ≡ dφ

d lnµ
= (∆c − 3) + βquant

dφ

d ln a
=

φ̇

Hbulk

UV FP

IR FP

µ
a

Late

Early

Gauge of holographic plane
δφ=0,    hij=e2ζδij 

φ=0

φ=0

Holographic description

ΨqdS [φ(t), ζ] =
�
e−

R
d
3x µ

−(∆c−3)φ(µ)O(x)
�

dCFT

<ζζ>, <ζζζ>, ... <OO>, <OOO>, ...

Y.U. & Garriga(13)



Holographic description

Power spectrum

we calculate the primordial fluctuation at a fixed probe brane with t = tc. For notational
simplicity, we abbreviate the coordinate t in the arguments of fields.

From (2.3), we have

ψbulk[ζ] = AZQFT[ζ] = Ae−WQFT[ζ] , (2.13)

where we wrote a normalization constant A explicitly. We may now calculate n-point
functions of the gravitational field perturbation in terms of the QFT correlators. From the
wave function ψbulk[ζ], we obtain the probability density

P [ζ] = |ψbulk[ζ]|2 = |A|2 e−(WQFT[ζ]+W ∗
QFT[ζ]) . (2.14)

Once we obtain the probability density function P [ζ], we can calculate the n-point functions
for ζ on the boundary as

〈ζ(x1)ζ(x2) · · · ζ(xn)〉 =
∫

Dζ P [ζ] ζ(x1)ζ(x2) · · · ζ(xn) (2.15)

where Dζ is the integration measure. In weakly coupled Einstein gravity, the field ζ has
a canonical kinetic term, and this leads to a nearly Gaussian distribution for the variable
ζ, accompanied by a measure which is linear in ζ. On the other hand, our aim here is to
proceed without reference to the explicit form of the bulk theory. Hence, after postulating
the correspondence (2.13) for the wave function, we still need some justification for choosing
Dζ instead of, say, Df(ζ), where f is an arbitrary function. As we shall see, the holographic
distribution (2.14) becomes independent of ζ as we approach the conformal fixed point.
This limit corresponds to de Sitter space, where the variable ζ is pure gauge. We therefore
expect that all values of ζ should become equally probable as the conformal fixed point is
approached. This will only be realized if we choose f to be linear in ζ, in which case the
measure is invariant under the Weyl rescalings ζ → ζ −α, where α is an arbitrary function
of position.

We determine the normalization constant A, adopting the normalization condition:
∫

DζP [ζ] = 1 . (2.16)

Eliminating the background contribution WQFT[ζ = 0] by the redefinition of A, P [ζ] is
given by

P [ζ] = |A|2e−ζ·W (1)− 1
2 ζ·W (2)·ζ−δWNL[ζ] , (2.17)

where we defined the vertex function W (n)(x1, · · · , xn) for n ≥ 1 as

W (n)(x1, · · · , xn) ≡ 2 Re
[

δnWQFT[ζ]
δζ(x1) · · · δζ(xn)

]
. (2.18)

For a later use, we discriminated the non-linear interactions, introducing δWNL[ζ] which is
defined as

δWNL[ζ] ≡
∑

n=3

1
n!

∫
ddx1 · · ·

∫
ddxn W (n)(x1, · · · , xn)ζ(x1) · · · ζ(xn) . (2.19)
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ΨqdS [φ(t), ζ] =
�
e−

R
d
3x µ

−(∆c−3)φ(µ)O(x)
�

dCFT

P[ζ]=|ΨqdS[φ(t), ζ]|2

Remark! Applies to weakly&strongly coupled case

P (k) = − 1
2Re[λ2φ̃(µ)2PO(k)]

�O(k1)O(k2)� = (2π)3δ(k1 + k2)PO(k1)

Bispectrum
φ̃(µ) ≡ µ−λφ(µ) λ ≡ ∆c − 3

the bulk action Sbulk with respect to the boundary metric. This differs from the notation
we are using here by a factor of i, since in the semiclassical limit WQFT ∼ −iSbulk (see
Eq. (2.6) ).
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the quantum corrections to the beta function, the beta function β is given in terms of the
slow-roll parameter ε as

β2 # (λu)2 # 2ε (4.12)
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B(k1, k2, k3) = −
3�

i=1

P (ki)

�
2Re

�
(λφ̃)3�O(k1)O(k2)O(k3)�

�
− λ

3�

i=1

1
P (ki)

�



Power spectrum

PO(k) ~ PO(k)  for CFTNear conformal FP

P (k) � − 6
π2

1
λ2φ̃(µ)2c

1
k3

In weakly coupled limit

c: central charge  ~ # of DOFs on boundary

β2 � λ2φ̃(µ)2 � 2εFriemann eqs. 

c � −(ldSMpl)2dS/CFT Strominger(01)
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SY inequality

An extension to higher-point correlators proceeds in a straightforward manner. Thus,
once we obtain all the m-point functions for the QFT operator O(x) with m ≤ n, we
can easily obtain the n-point functions for the curvature perturbation ζ(x). Note that
although the computation of the n-point functions proceeds as in the perturbative expan-
sion of the weakly coupled QFT, the propagator W (2)−1(x1, x2) and the vertex functions
W (n)(x1, · · · , xn) with n ≥ 3 can include the resumed non-perturbative effect of the
boundary QFT.

4.4 The Suyama-Yamaguchi inequality

In the conventional inflation, where the gravity is weakly coupled and the perturbative
analysis in the bulk is valid, the non-linear parameters fNL and τNL:

fNL ≡ 5
12

lim
k1→0

B(k1, k2, −(k1 + k2))
P (k1)P (k2)

(4.27)

τNL ≡ 1
4

lim
k12→0

T (k1, k2, k3, k4)
P (k1)P (k3)P (k12)

(4.28)

are known to satisfy the so-called Suyama-Yamaguchi (SY) inequality [38]:

τNL ≥
(

6
5
fNL

)2

. (4.29)

The SY inequality is first shown by using the δN formalism, which gives a map between
the field fluctuation at the Hubble crossing time and the fluctuation of the number of e-
folding that approximately agrees with the curvature perturbation at the end of inflation,
under the assumption that the field fluctuation is totally Gaussian at the Hubble crossing
time. Under this assumption, the equality holds for a single field model of inflation. A
generalization of the SY inequality has been intended later, for instance in Refs. [39, 40].
The authors of Ref. [40] showed that if τNL and (fNL)2 are either momentum independent
or have the same momentum dependence, we can verify the SY inequality as well as in the
presence of the non-Gaussianity at the Hubble crossing time.

Here, we study the validity of this inequality in holographic inflation. As the limit
k12 → 0, more precisely, we mean the limit k12 & k1, k3, k13. Using Eq. (4.26), we obtain
the contribution of the second term in Eq. (4.22) to τNL as

lim
k12→0

T2(k1, k2, k3, k4)
P (k1)P (k3)P (k12)

→ 4
(

6
5
fNL

)2

. (4.30)

The third term in Eq. (4.22) gives

T2(k1, k3, k2, k4)
P (k1)P (k3)P (k12)

=
P (k13)
P (k12)

{
B(k1, −k13, k3)

P (k1)P (k13)

}2

, (4.31)

where we noted that k1 ' −k2 and k3 ' −k4 in the limit k12 → 0. The term in the curly
brackets is expressed by k1/k3 or k3/k1 which are larger than k12/k1 and k12/k3. Therefore
the right hand side of Eq. (4.31), multiplied by 1/P (k12), which approaches 0 in the limit
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B ~

T ~ + 
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folding that approximately agrees with the curvature perturbation at the end of inflation,
under the assumption that the field fluctuation is totally Gaussian at the Hubble crossing
time. Under this assumption, the equality holds for a single field model of inflation. A
generalization of the SY inequality has been intended later, for instance in Refs. [39, 40].
The authors of Ref. [40] showed that if τNL and (fNL)2 are either momentum independent
or have the same momentum dependence, we can verify the SY inequality as well as in the
presence of the non-Gaussianity at the Hubble crossing time.

Here, we study the validity of this inequality in holographic inflation. As the limit
k12 → 0, more precisely, we mean the limit k12 & k1, k3, k13. Using Eq. (4.26), we obtain
the contribution of the second term in Eq. (4.22) to τNL as

lim
k12→0

T2(k1, k2, k3, k4)
P (k1)P (k3)P (k12)

→ 4
(

6
5
fNL

)2

. (4.30)

The third term in Eq. (4.22) gives

T2(k1, k3, k2, k4)
P (k1)P (k3)P (k12)

=
P (k13)
P (k12)

{
B(k1, −k13, k3)

P (k1)P (k13)

}2

, (4.31)

where we noted that k1 ' −k2 and k3 ' −k4 in the limit k12 → 0. The term in the curly
brackets is expressed by k1/k3 or k3/k1 which are larger than k12/k1 and k12/k3. Therefore
the right hand side of Eq. (4.31), multiplied by 1/P (k12), which approaches 0 in the limit
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SY inequality

Equality holds for single field case

If Gaussian at k~aH and δN can be applied
Suyama&Yamaguchi(08)

If fNL&τNL are k independent or have the same k dependence
Assassi, Baumann & Green(12)



SY inequality in holography
k12 → 0, vanishes. The fourth term in Eq. (4.22) also vanishes in this limit. Thus, we
obtain

τNL −
(

6
5
fNL

)2

= −1
4

lim
k12→0

Ŵ (4) (k1, k2, k3, k4)
P (k1)P (k3)

P (k12)
, (4.32)

and hence the SY inequality holds, if the right hand side of Eq. (4.32) is equal to or is larger
than 0. If the vertex function Ŵ (4)(k1, k2, k3, k4) does not yield a singular pole in the
limit k12 → 0, the right hand side of Eq. (4.32) vanishes and hence the equality holds as in
single field models of the weakly coupled inflation. However, the momentum dependence of
the vertex function Ŵ (4) which includes the non-perturbative effect, is rather less obvious.
To capture the momentum dependence of the vertex function Ŵ (4), we need to specify
the four-point function of O(x). As is known, even in CFT, the higher point functions
〈O(x1) · · ·O(xn)〉u=0 with n ≥ 4 are not determined only by the conformal symmetry.
Actually, the Ward-Takahashi identities leave functional degree of freedom in the four
point function [36]. It would be interesting to examine the validity of the SY inequality in
a particular model of the holographic inflation.

5. Concluding remarks

In this paper, using the holographic formula (2.13) and the Ward-Takahashi identity, we
provided the relation between the n-point functions of the bulk gravitational field ζ and n-
point functions of the QFT operator O on the boundary. In contrast with Refs. [18, 27], we
expressed the Ward-Takahashi identity so that it directly relates the generating functional
ZQFT to the n-point functions of the QFT operator O. This bypasses a redundant step
which refers to the energy-momentum tensor, making the computation more compact and
transparent. This result can be also used to compute the spectra of ζ based on the domain
wall/cosmology correspondence, which is addressed in Refs. [13, 14, 15, 16, 17, 18]. In these
papers, the description of the spectra is provided based on the holographic renormalization
method. We showed that both methods lead to the same formula relating the n-point
functions of ζ and those of O. In Ref. [13, 14, 17], the correlators of the tensor modes are
also studied. An extension of our argument to include these correlators is left for a future
study. We also studied the validity of the Suyama-Yamaguchi inequality and showed that
unless W (4) yields a singular pole in the limit k12 → 0, τNL agrees with (6fNL/5)2 as has
been known in weakly coupled single field models.

When we calculate the n-point functions of the curvature perturbation ζ, using the ver-
tex functions W (n)(x1, · · · , xn), we neglected the loop corrections. (Note that the vertex
function W (n)(x1, · · · , xn) includes the non-perturbative effect of the QFT on the bound-
ary.) As a final issue of the present article, we examine the validity of this approximation.
Loop diagrams can be obtained by inserting additional interaction vertices to the tree level
diagrams, presented in Figs. 1 and 2. A naive order estimation tells that inserting a further
n-point interaction vertex

n∏

i=1

∫
d3xiζ(xi)W (n)(x1, · · · , xn)
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dCFT dual to single field inflation

∝ (k12) 3       0

Four point function W(4)

S4 ∼
4�

i=1

�
d3kiŴ

(4)(k1, k2 ,k3 ,k4)δ(k1 + · · · + k4) ζk1 · · · ζk4

Ŵ
(4) � �OOOO�, �OOO�, �OO�

lim
k12→0

Ŵ (4)(k1, k2 ,k3 ,k4)
P (k12)

→ 0If τNL =
�

6
5
fNL

�2

,

Four point fn. depends on details of (d)CFT.
For local theory, SY inequality holds.



Conclusion

Holographic description of inflation seems feasible.

・ In the weakly coupled limit, the results from the standard
cosmological perturbation theory are reproduced. 

Power spectrum, Consistency relation, SY inequality,...

・ We derived the universal expression, which can apply to
both strongly and weakly coupled regime. 

・ An extension to multi field cases is possible. 

SdCFT = SCFT +
�

a

�
d
3x
√

g φ̃aOa

Y.U., Garriga, ...   in progress


