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PRIMORDIAL MAGNETIC 
FIELDS 
INFLATION 

Can produce large-scale cosmological magnetic fields 
 

-  Quantum fluctuations excite light fields modes on 
scales  λ ≤ H-1 

 
-  The inflationary expansion stretches these 

wavelengths to scales  ≥ H-1 , and fluctuations freeze-
out (as classical electromagnetic waves). 

 
-  During inflation the universe is not a good conductor 
→ the  magnetic flux is not conserved 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PRIMORDIAL MAGNETIC 
FIELDS 

After reheating, the universe becomes a good 
conductor and the magnetic flux is 

conserved  a² B ≈ const 

Since magnetic fields are conformally 
coupled to gravity 

-4aρB ∝

So, magnetic fields are finally too weak.  
The conformal invariance of Maxwell equations is 

broken in models in which the electromagnetic field is 
gravitationally coupled (Turner and Widrow, 1988) 



PRIMORDIAL MAGNETIC 
FIELDS 

•  Non-abelian gauge theories may have a 
ferromagnetic vacuum (Savvidy vacuum), 
with a non zero magnetic field, even at high 
temperarures                                       
(Savviddy, 1977; Enqvist and Olesen, 1994)  

•  On anoher hand, upper limits on inflation 
energy scale may be established from cosmic 
magnetic fields                                         
(Fujita and Mukohyama, 2012) 



WARM   INFLATION 
A model for inflation where thermal 
equilibrium is maintained, with no need 
of a large scale reheating. It requires a 
dissipative component of sufficient size 
(Berera & Fang, 1995; Berera, 1995).  

Starting from the finite temperature 
one-loop Coleman-Weinberg 

potential for SU(5), they find a slow-
roll solution for unexceptional values 

of the coupling constant. 

( ) 03 , =+φΓ++φ φTVH 



WARM   INFLATION 
Particle models with global SUSY, with 
dissipative effects of particle production 

the radiative corrections to the inflaton potential are 
small due to fermion-boson cancellation and thermal 

contribution to the inflaton mass from heavy sector loops 
are Boltzmann suppressed (Hall and Moss, 2004)  

The flatness of the 
potential is not spoiled. 

yy ~~→→ χφIn a two stage reheating process:  

heavy boson light fermions 



WARM   INFLATION 

They start from a new-inflation type potential, with 
quantum corrections at one loop  
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and study thermal effects.  

  



WARM   INFLATION 

Assumptions 
-   One superfield is coupled to the inflaton 

(becomes very heavy) and the other one has a 
vanishing coupling (light sector) 

-  Soft SUSY breaking in the heavy sector 
-  Light radiation thermalises 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THERMAL CONTRIBUTION  
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Self energies, in the HTL limit: 
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THERMAL CONTRIBUTION  

where Δ(K)≈K-2, k0=2nπT for bosons and k0=(2n+1)πT for fermions (denoted by a tilde) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

THERMAL CONTRIBUTION  
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Propagators with magnetic fields, with 
Shwinger’s proper time method: 

MAGNETIC CONTRIBUTION  
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We work with a constant magnetic field along 
the z axis, so k||

2=k0
2-k3

2, k┴2=k1
2+k2

2  
and with the hierarchy of scales: 

eB << m2 << T2 

where m is the mass of the fields inside the loop. 

MAGNETIC CONTRIBUTION  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Landau levels:  

MAGNETIC CONTRIBUTION  
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MAGNETIC CONTRIBUTION  
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Where r = ± 1 represents the two possible 
orientations w/r to the magnetic field  



EFFECTIVE POTENTIAL 
preliminary results 
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EFFECTIVE POTENTIAL 
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EFFECTIVE POTENTIAL 
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EFFECTIVE POTENTIAL 



We have calculated magnetic contributions to the effective 
potential of a warm inflation model, based on global 

supersymmetry and a two-stage reheating process. For the 
employed hierarchy of scales, corrections are small and 

the flatness of the potential seems not to be spoiled.  
In fact, magnetic terms work in the direction of making 

the potential less steep. 
 
 
 



•  Develop the technique to work with 
stronger magnetic fields 

• Analyze if the effective 
potential  fulfills the slow-
roll conditions 

•  Explore if inflation can 
impose some bounds on 
primordial magnetic 
fields and vice versa 


