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Introduction: massless scalars + inflation i S

Inflation is a successful paradigm explaining difficulties of the hot big bang

Simplest realization of inflation invokes a nearly homogeneous scalar field,
which provides a negative pressure
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Introduction: quantum particle production i ey

The inflaton field undergoes quantum particle production during inflation

o(z,t) = ¢(t) + 09(z, 1)

Sé(x,t) = f (‘21?;”3 [ak Sbi(t) €% 4 h.c.]

Evolution of the Fourier modes of the field
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On superhorizon scales the field obtains a non-zero VEV if m <& H

Particle productlon occurs for light scalars other than the inflaton too
H2
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Any massive, light field is produced during Inflation
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Introduction: condensate development - - i i

On superhorizon scales the field fluctuations accumulate

¢(é:,t) = ¢(t) -|-f ((zijj3 [&E 0 (1) e —|- h.c.] =

Develop_ment

of condensates

[ The uses of scalar condensates ] Enqvist and Mazumdar’02

@® Baryogenesis

Afleck-Dine baryogenesis: decay of a condensate with baryon charge

) Cosmologlcal fluctuatlons

Curvature perturbation: curvaton fields
Perturbations in light scalars: Curvature pert. at the end of mﬂatlon

® Reheating:
Inhomogeneous reheating:
Parametric resonance .
Non-perturbative decay of flat directions
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Introduction: the separate universe approach ' i S

On superhorizon scales the field fluctuations accumulate

o) =80+ [ s

Separate Universes: nearly homogeneous superhorizon patches evolve
independently of each other Wands et al.’00

Development
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Stochastic formalism (self-interacting field) i Sl

Field equation in de Sitter space:
®+3HD + V'(®) —a2V20 =0

Long/short wavelength decomposition

[ (I)(t, :I:) = qﬁ(t) -+ qﬁq(t, :[:) ] Starobinsky’ 86

Short-distance field: scales smaller than k;l

u(t,2) = [ o3z 00k = k) [awon(t) 4% + i)

Coarse-graining scale: -

| [ ke =ea®)H . e<1 ]
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Stochastic formalism (massive, non-int. field) i Sk

Effective EOM for coarse-grained field
¢ +3H¢ —a?V29 + V'(9) = £(t, @)
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Probabilistic evolution determined by Fokker-Planck equation:
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8:P(¢,t) = 9, (L;ﬁ) P(#, t)) + f? 83 4P (¢, 1)
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The question i S

Massless fields (MSSM flat directions) have their fluctuations growing
SH
an2?

(¢%) =
But they are coupled to other fields
Vint(fi'ﬁ‘ax)_ = g’ ¢°x°
The coupling provides an effective mass for the massless field
mZz = g°x°

Coupling leads to bounded fluctuations = Enqvist etal.’ 11 °

[ Is it possible to avoid this natural blocking? J
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The physical system

Lagrangian for two massless fields, gand y

1 1 1
s Eg’"’ OupOyd + Eg‘”"’ OuXxOuX — ﬁmixz — o

Equations of motion:
&+ 3HP — a2V2D + ¢*> 2P =0

X+ 3Hx —a VX + (¢°®* + m2)x =0

simplifying @ Massless y:m2 =0

assumptions @ |nitial non-vanishing vev (®(z)) = & , my = g°%3 > H*

' T L HN H |
Integrate x out  x* =~ {(x*“)r >~ = € Enqvist et al. ‘88
2w ) my

Effective Fokker-Planck
gaH?e
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The physical system
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Lagrangian for two massless fields, gand y

1

1

1
L=-g"0,00,¢+ Eg‘”"’ OuXxOuX — ﬁmixz — o

2
Equations of motion:

&+ 3HP — a2V2D + ¢*> 2P =0

X +3Hx —a2Vx + (¢°®* + m2)x =0

simplifying @ Massless y:m2 =0

assumptions @ |nitial non-vanishing vev (®(z)) = & , my = g°%3 > H*

Integrate x out X%~ (xX*1r ~

Effective Fokker-Planck
o P =

1272
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el € Enqvist et al. ‘88
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L—» Scale dependence: k, = ea(t)H
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Probability density:

Timescales:

L= = 2 drog i1 1
Diffusion: Tg = ? ( HEN) N~H N
H 367 ¢y -1
{ Drift; Tp. PL ( g'f H)

—> Diffusive motion dominates = free field fluctuations

Tﬂ' << T’u;

[Tp; KL Tg¢ => Diffusion freeze-out, drift dominates = equilibrium fluct. ]
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On boundary conditions - - ' W

The picture is incomplete:

Initially m;, = ¢°®§ > H? but eventually. m?2 ~ H?

[ Production of superhorizon fluctuations of x i1s no longer suppressed ]

Moduli trapping at symmetry points: V; .(¢, x) = ¢#*x>
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The ensemble, in detail i R

Probability density:

)

8r20ik

or =¢o—kt , @_=—¢o+ 20, — Kkt — 773

Fraction with fluctuating field

{ e (%)gwi?@’t)}"“(“"): "2 1 (%))

Mean square from diffusion

£<¢2>ﬂ= \/;?[Iz(w)cfz(so)]} hio) = [~ exp |-L2E | ag
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The ensemble, in detail i Sdlhydlr

Not too much inflation: N < Ngnigg = &=~ 0 quasi-free fluctuations

| 52 2 | | 0
(¢°)a = exp (ﬁ) \/;05 +260 + (0" + &° + ¢;) Ext [\/ﬁ]
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Timescale to arrive at the barrier: —— + o5 < (¢o — ¢c)’

3
(S (W)a = 200+ (02 + 8 + 62) = (6(0) + 2t

T RS |
After reaching the barrier: e 02> (¢o — Pc)?

(B (D)hn = 25\/ (77 +%)
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(#)a from out-of-equilibrium fluctuations - - W S

logo (& )a/H*

[ ¢ begins “away” from the barrier: ¢. = 3H , ¢o = 5.0H , 05 = 0.25H? ]
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In 1-10% of the ensemble {(¢%)q is ~10 times larger than in the equilibrium



£5%%  Universidad

A . ¢ Complutense
Conclusions ¢ Madrid

Massive scalar fields have their fluctuations growing upto an upper bound

3H*
2 "
() = 8722

A massless field with an effective mass determined by its coupling

22t 8

Vint(#, x) = g°¢“x

is able to circumvent the above blocking, if y behaves as a heavy field. Th1s can be
arranged through the initial condition

(®(z)) = D0 g?®% > H‘Z_

New analytic formula to estimate amplitude of fluctuations at any time.

(%1 = <= lalps) - Cha(i-)

The coupling gives rise to parts of the Universe where the field obtains a large non-
gaussian fluctuation. Under certain conditions this non-gaussmmty could show up in

the CMB.
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