The QUBIC experiment

the Q U Bolometric Interferometer for Cosmology

Elia Stefano Battistelli Sapienza, University of Rome

... for the QUBIC collaboration

•The QUBIC collaboration, 2011, APP, 34, 705-716 •Piat et al, 2012, JLTP 167, 872P •Ghbri et al, 2014, JLTP 176, 698

What is QUE	BIC?		
B-mode R	Millimeter-wave		Q and
Adiation	+ Bolometric Interferometer	Ξ	Bolometric Interferometer for
Nterferometer			Cosmology

mm interferometric experiments to observe the Cosmic Microwave Background Radiation Polarization

000

QUBIC collaboration

QUBIC collaboration

SAPIENZA UNIVERSITÀ DI ROMA	PARIS
BICOCCĂ	DIDEROT
UNIVERSITÀ DEGLI STUDI DI MILANO	CSNSM
N.I.IS.8	
ASI Science Data Center	LAS Gray
ogenzio spaciole spaciole	CITS

A. Ghribi¹ · J. Aumont⁴ · E. S. Battistelli⁶ · A. Bau⁷ · L. Bergé³ · J-Ph. Bernard² · M. Bersanelli⁸ · M-A. Bigot-Sazy¹ · G. Bordier¹ E. T. Bunn¹² · F. Cavaliere⁸ · P. Chanial¹ · A. Coppolecchia⁶ · T. Decourcelle¹ · P. De Bernardis⁶ · M. De Petris⁶ · A-A. Drilien³ · Dumoulin³ · M. C. Falvella¹³ · A. Gault¹¹ · M. Gervasi⁷ · M. Giard² · M. Gradziel⁵ · L. Grandsire¹ · D. Gayer⁵ · J-Ch. Hamilton¹ · V. Haynes⁹ · Y-G. Hiraut¹ · N. Holtzer³ · J. Kaplan¹ · A. Korotkov¹⁰ · J. Lande² · A.

¹AstroParticule et Cosmologie, Univ. Paris 7, CNRS · ²Institut de Recherche en Astrophysique et Planétologie · ³Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse · ⁴Institut d'Astrophysique Spatiale · ⁵NUI Maynooth · ⁶Università di Roma La Sapienza · ⁷Università di Milano Bicocca · ⁸Università degli studi Milano · ⁹University of Manchester · ¹⁰Brown University · ¹¹University of Wisconsin · ¹²University of Richmond · ¹³Italian Space Agency

+ NIKHEF, Amsterdam about to join QUBIC

QUBIC collaboration

BICOCCA	PARIS
UNIVERSITÀ DEGLI STUDI DI MILANO	CSNSM
SILUES SCIENCE	
ogenzia speziale Raliane	

A. Ghribi¹ · J. Aumont⁴ · E. S. Battistelli⁶ · A. Bau⁷ · L. Bergé³ · J-Ph. Bernard² · M. Bersanelli⁸ · M-A. Bigot-Sazy¹ · G. Bordier¹ E. T. Bunn¹² · F. Cavaliere⁸ · P. Chanial¹ · A. Coppolecchia⁶ · T. Decourcelle¹ · P. De Bernardis⁶ · M. De Petris⁶ · A-A. Drilien³ · Dumoulin³ · M. C. Falvella¹³ · A. Gault¹¹ · M. Gervasi⁷ · M. Giard² · M. Gradziel⁵ · L. Grandsire¹ · D. Gayer⁵ · J-Ch. Hamilton¹ · V. Haynes⁹ · Y-G. Hiraut¹ · N. Holtzer³ · J. Kaplan¹ · A. Korotkov¹⁰ · J. Lande² · A.

¹AstroParticule et Cosmologie, Univ. Paris 7, CNRS · ²Institut de Recherche en Astrophysique et Planétologie · ³Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse · ⁴Institut d'Astrophysique Spatiale · ⁵NUI Maynooth · ⁶Università di Roma La Sapienza · ⁷Università di Milano Bicocca · ⁸Università degli studi Milano · ⁹University of Manchester · ¹⁰Brown University · ¹¹University of Wisconsin · ¹²University of Richmond · ¹³Italian Space Agency

+ NIKHEF, Amsterdam about to join QUBIC

Concordia Station: Dome C

QUBIC Site: Dome C

Great landscape

QUBIC Site: Dome C

Healthy weather

BRAIN: site testing

•Spinelli,, et al., MNRAS, 414, 3272S, 2011 •E. Battistelli et al., MNRAS 423, 1293, 2012

2009-2010 campaign was dedicated to mm atmospheric emission and polarization: this was done at 150GHz

CIRCULAR POLARIZATION < 0.19 % LINEAR POLARIZATION < 0.11 %

$\langle \tau \rangle$ = 0.050 ± 0.003 ± 0.011

We inferred <PWV> lower than 0.6mm during summer but this is a direct 150GHz measurement

•Spinelli,, et al., MNRAS, 414, 3272S, 2011 •E. Battistelli et al., MNRAS 423, 1293, 2012

2009-2010 campaign was dedicated to mm atmospheric emission and polarization: this was done at 150GHz

CIRCULAR POLARIZATION < 0.19 % LINEAR POLARIZATION < 0.11 %

We inferred <PWV> lower than 0.6mm during summer but this is a direct 150GHz measurement

QUBIC QU Bolometric Interferometer for Cosmology

 $0.050 \pm 0.003 \pm 0.011$

Possible instruments

- Imagers with bolometers (thermal):
 - No doubt they are nice detectors for CMB:
 - wide band
 - low noise
- Interferometers (coherent):
 - Long history in CMB
 - CMB anisotropies in the late 90s (CAT, VSA, CBI...
 - CMB polarization Ist detection (DASI, CBI)
 - Clean systematics:
 - No telescope (lower ground-pickup & cross-polarization)
 - Angular resolution set by receivers geometry (well known)
 - Technology used so far
 - Antennas + HEMTs : higher noise wrt bolometers
- Can these two nice devices be combined ?
 - Bolometric Interferometry !

Good sensitivity

Good control of systematics

Both

Possible configuration

- In an interferometer, radiation is selected by diffractive apertures and then recombined
- QUBIC is an adding interferometer: we use the Fizeau approach in which all the outputs are summed (linear combination) into the detector array. Better when there are several apertures.
- Phase difference is present both before and after the incoming antennas: External phase difference gives the relation visibility FT sky-image...similarly does the internal phase difference but FT⁻¹
- Thus a Fizeau combination enables imaging in an interferometer except that images are modulated by synthesized beam produced by interference pattern
- Horns act as diffractive apertures and make a "spatial filtering": QUIBC is an imager that accept only a sub-set of modes

QUBIC in a nutshell

- Bolometric interferometer: adding interferometer (synthetic imager) to use the sensitivity of bolometers and the systematic control of interferometers
- To be installed in Dome C: probably the best place on earth (like Carlsberg beer)
- ~1.5% of the cleanest sky mapped multifrequency with HWP polarization capability
- Angular resolution: a little difficult for an interferometer...let's say 0.5°
- Ist module December 2016 with 2000 TES at 150GHz and 220GHz: goal r<0.05 at 90% C.L.: anticipated sensitivity:

 -3.7uK/arcmin @ 150GHz
 -9.8uK/arcmin @ 220GHz
- Extended: 6 modules, at 90, 150, 220GHz possibly with KID detectors: goal r<0.01 at 90% C.L....it will require a deep rethinking of Dome C

QUBIC design

Dual Band QUBIC (150/220 GHz in the first module)

- B2B horns are: -single moded at 150GHz -multi- (few-) moded at 220GHz they are diffractive apertures that make spatial filtering i.e. the entrance pupil is a square array of gaussian-illuminated apertures
- The beam combiner alone can be used as a telescope (uniformly illuminated pupil) with N~FOV/(λ / D) independent Airy spots
- On a given focal plane pixel, the synthetic image is the convolution of sky signal (Q,U) and synthetic beam

B.I. = Synthesized imager

20x20 horns 14 deg. FWHM, D=1.2 cm

Synthesized beam

sky as with an imager

QUBIC

A CONTRACTOR

B.I. = Synthesized imager

Synthesized beam used to scan the sky as with an imager

Systematics: Self-Calibration

- BI relies on the accurate knowledge of your instrument including the departure from idealities
- A unique possibility to do that, and to handle systematic errors, is the self-calibration
- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field

Example: exact horns locations (figure exaggerated !!)

QUBIC

Systematics: Self-Calibration

- BI relies on the accurate knowledge of your instrument including the departure from idealities
- A unique possibility to do that, and to handle systematic errors, is the self-calibration
- Use horn array redundancy to calibrate systematics
 - In a perfect instrument redundant baselines should see the same signal
 - Differences due to systematics
 - Allow to fit systematics with an external source on the field

Example: exact horns locations (figure exaggerated !!)

QUBIC

Self-Calibration results

[Bigot-Sazy et al., A&A 2012, arXiv:1209.4905]

Dielectrically embedded mesh HWP Cardiff, G. Pisano et al. 2012

400 primary horns, aluminum platelet FWHM = 14° Milano Courtesy of F. Cavaliere

Off-Axis Gregorian System, 300mm equivalent focal length, 0.5m mirrors, Low aberrations (Maynhoot, Rome)

Electro-magnetic switches mainly used for self-calibration Milano Bibocca, APC, Paris

Subsystem	Temperature		
HWP	3 K		
Polarizing grid	3 K		
Horn Arrays	3 K		
Primary mirror	K		
Secondary Mirror	I K		
Detector arrays	0.3 K		
Read out electronics	I K and 40 K		

QUBIC QU Bolometric Interferometer for Cosmology

000

- -TES + SQUIDs + SiGe ASIC Mux
- -2 arrays of 992 NbSi TES
- -Capacity coupling-Time Domain Multiplexing
- -Bias reversal AC SQ1 bias

-The current bias steps through the rows for a first multiplexing stage and a cryogenic amplifier steps through the columns for a second multiplexing stage -This is done by the ASIC

-Multiplexing factor 128/1 in a 2D configuration

- -TES + SQUIDs + SiGe ASIC Mux
- -2 arrays of 992 NbSi TES
- -Capacity coupling-Time Domain Multiplexing
- -Bias reversal AC SQ1 bias
- -The current bias steps through the rows for a first multiplexing stage and a cryogenic amplifier steps through the columns for a second multiplexing stage -This is done by the ASIC
- -Multiplexing factor 128/1 in a 2D configuration

M. Piat – APC, Prele - APC

100

Forecast

Forecast

Summary

QUBIC is a novel instrumental concept

★ Bolometric Interferometer optimized to handle systematics: QUBIC is a synthesized imager (or an imaging interferometer) observing a selected range of spatial frequencies that can be accurately calibrated

★ Dedicated to CMB polarimetry and inflationary physics

High sensitivity with ~2000 TES bolometers

★ Located at Dome C, Antarctica

- <u>Target :</u>
- First module (150/220 GHz): r < 0.05 at 90% C.L. (first light late 2016)
- Six modules (90, 150, 220 GHz) : r < 0.01 at 90% C.L.