Galactic dust polarization foregrounds for current and future CMB experiments: Learning from the BICEP2/Keck/Planck experience

Ludovic Montier

on behalf on Planck Collaboration

The BICEP2 preliminary analysis

The BICEP2 results

 (\cdot)

353GHz Intensity + Magnetic field structure

 (\cdot)

 (\cdot)

The Planck view of the dust B-Modes

The Planck warning...

Planck Int. XXX 2014

So what ? Is BICEP2 signal primordial or Galactic, or both ?

The Planck view of the dust B-Modes

The Planck 353 GHz polarization modelling

L. Montier

 (\cdot)

The Planck 353 GHz polarization modelling

Dust contamination level in units of r

Spatial variations of the B/E ratio

Polarization fraction of dust ~10% at high latitude Dust is not homogeneously distributed E/B ratio depends on local filamentary structures Planck Int. XXXVIII 2015

Dust modelling valid on large scales but non constrained on local fields to reach high accuracy on r

BICEP2 / Keck / Planck MoU

150 GHz - 400 deg² - 57nK.deg

Planck

353 GHz all-sky - 7.31 μ K.deg

L. Montier

BICEP2 / Keck / Planck MoU

150 GHz - 400 deg² - 57nK.deg

Planck

353 GHz on BICEP2/Keck Field

ł

L. Montier

EWASS 2015 - Quest for Gravitational Waves

23 Jun 2015

Keck

BICEP2 / Keck / Planck MoU

150 GHz - 400 deg² - 57nK.deg

Planck

353 GHz on BICEP2/Keck Field

L. Montier

BICEP2 / Keck / Planck MoU

Planck

150 GHz - 400 deg² - 57nK.deg

L. Montier E

Multi-Component Multi-Spectral Likelihood analysis

L. Montier

Spectral subtraction analysis

Planck 353GHz used as a dust template Extrapolated to 150GHz using alpha = 0.04

β_D = 1.59 +- 0.11

Is Planck 353GHz Dust template satisfactory ?

The primordial quest of B-modes is now limited by the quality of the dust foreground subtraction

Looking for the optimal band

The higher the frequency, The higher the S/N of the dust signal

Looking for the optimal band

The higher the frequency, The higher the S/N of the dust signal Hyp: Dust emission modelled by a modified blackbody with a unique temperature and spectral index

$$\beta_D = 1.59 + 0.11$$

A compromise may be found for a given knowledge of the dust spectral index and the instrumental sensitivity

Limits on astrophysical decorrelation ?

Spatial variations of the dust spectral index $\sigma(\beta_D) = 0.11$ (Planck Int. XXII 2014) Frequency variations of the dust spectral index

Line of sight variations of dust temperature ?

Check consistency of

<353 x 217>_{BB}

 $[<353 \times 353 >_{BB} <217 \times 217 >_{BB}]^{1/2}$

Averaging over the 400 deg² patches yields a mean decorrelation ratio: $d = 1.01 \pm 0.07$

Averaging over the six $0.3 < f_{sky} < 0.8$ patches yields: $d = 1.01 \pm 0.03$

Simulating (conservatively) a 10% suppression of BKxP353 leads to bias on r of +0.018

Need to be characterized better if we want to get better constraints of r

CNES, IRAP Toulouse(PI Bernard), IAS Orsay, CEA Saclay, Roma Univ., Chalmers Univ. of Technology, Cardiff Univ., Univ. College London

Science Objective:

- Measure linear polarization of dust emission in the Far-InfraReD
- Reveal the structure of the magnetic field
- Geometric and magnetic properties of dust grains
- Understand Polarized foreground

Observations: Galactic plane (|b|<20°) and diffuse Interstellar medium (cirrus).

Characteristics: λ =240 & 550 µm, resolution: 3'. Bolometer array of 2048 detectors

Weight, Altitude: ~ I ton, 40 km

Status: Financed by CNES. Currently in assembling phase

PILOT

Ist Flight: Sep. 2015 from Timmins, Canada

2nd Flight: Apr. 2017 from Australia

Deep fields at high latitude in the south hemisphere at 240 um

"PlanB"

IRAP / IAS / LPSC

Using PILOT Platform and Mirror

New focal plane with 5000 LEKID: (Lumped Element KID)

- Working from 150mK to 300mK
- From 80GHz to 1.2THz
- Already implemented on NIKA & NIKA2
- Built by PTA Grenoble

Sensitivity predictions:

Extrapolated at 353GHz

frequency [GHz]	270	350	600	1000
BG Power [pW]	2.0	2.7	4.7	8.0
BG NEP $[10^{-17}W/\sqrt{Hz}]$	2.8	3.6	6.2	10.3
S 1- σ [kJy/sr-deg]	0.37	0.61	1.8	5.0
$I_{ u}({ m dust})$ [†]	0.44	1.0	4.8	15.9
S 1- $\sigma \left[\mu \mathbf{K}_{CMB} \text{-deg} \right]$	2.9	2.1	1.3	1.1
$\mathrm{S}/S_{planck}^{\dagger}$	2.5	3.4	5.6	6.7

EWASS 2015 - Quest for Gravitational Waves

23 Jun 2015

"PlanB"

3-days flight covering 3000deg²

Proposal submitted to CNES (Ballon French Agency) Ist flight: 2019 ?

Constraining the Dust SED

Dust polar. SED known (measured using PlanB + Planck)

Dust polar. SED varies within Plank uncertainties

Main limitation on primordial B-Modes detection is Galactic dust foreground

New designs to map the Galactic dust polarization at high latitude: Balloon or Satellite (SPIDER, EBEX, BFore, PILOT, PlanB) (LiteBird, Core+)

Collaboration between Galactic dust mapping experiments and CMB B-Modes ground experiments

