

CEB for CMB

Nizhnij Novgorod State Technical University Laboratory of Cryogenic Nanoelectronics

Chalmers University, MC2

Multichroic Seashell Antenna with Resonant Cold-Electron Bolometers for COrE

Leonid S. Kuzmin, Ekaterina A. Матрозова

In scope of the ESA Project "Next Generation Sub-millimetre Wave Focal Plane Array Coupling Concepts" - multi-frequency arrays of bolometers

In collaboration with:

Paolo de Bernardis, Silvia Masi & Maria Salatino (Rome University), Bruno Maffey (Manchester Un), Neil Trappe (Maynooth Un), Michail Tarasov (Chalmers), Alexander Sobolev (IREE), Alexander Chiginev and Anna Gordeeva (NSTU) 1

EWASS-2015

Outline

- ESA-COrE, Multichroic Systems.
- Resonant Cold-Electron Bolometer (RCEB)
- Sinuous, Cross-slot and Seashell Antenna with RCEB
- Conclusions

The ESA Tender "ESTEC ITT AO/1-7393/":

Next Generation Sub-millimetre Wave Focal Plane Array Coupling Concepts (multi-frequency arrays of bolometers for COrE)

APC Paris, France, Cardiff University, UK, Chalmers Tech University, Sweden, La Sapienza University of Rome, Italy, Manchester University, UK, NUI Maynooth, Ireland.

CORE Cosmic ORigins Explorer

A satellite mission for probing cosmic origins, neutrinos masses and the origin of stars and magnetic fields

through a high sensitivy survey of the microwave polarisation of the entire sky

A proposal in response to the European Space Agency Cosmic Vision 2015-2025 Call

11:35:33

BICEP2: B-mode polarization

Light from the early universe is deflected by the gravitational lensing effect of galaxies forming B-modes

The power in B-mode polarization as a function of scale on the sky ("Multipole"). The black dots are BICEP2's detection;

all other points are non-detections by previous experiments.

The leftmost 3 or 4 points are the ones that give evidence for B-mode polarization from cosmic effects,

and therefore possibly for gravitational waves at early times,

and therefore, possibly, for cosmic inflation preceding the Hot Big Bang!

11:35:33

Pros and Cons of Multifrequency systems

- Simultaneous data acquisition by multi-frequency pixel in the same point.

- Reducing size of the focal plane.
- Unavoidable degradation of some parameters

ESA Requirements for Multifrequency Systems:

Two frequency channels	575 & 105GHz
F number of pixel	2 – 2.5
Bandwidth	20 %
Return loss max	-25dB
Cross-polarization max	-20dB
Beam ellipticity	up to 5%
Cross Talk	Low

Adrian Lee et al., University of California, 2008, ...

Components of Multi-Chroic Pixel

1) Lenslet (6mm diameter)

Broadband anti reflection coated

3) Microstrip Filter

- Splits signal into desired bands
- Lumped elements

2) Sinuous Antenna

- Over octave bandwidth
- Sensitive to 2 linear polarizations
 4) TES Bolometer

- Operates @ 250mK bath temp^{450um}
- Background Noise Limited

Cold-Electron Bolometer (CEB) with Capacitive Coupling to the Antenna

- 1. High sensitivity due to electron cooling effect:
- 2. High dynamic range due to direct electron cooling
- 3. Insensitivity to Cosmic Rays (1 glitch/40 days(!) in contrast to 1 glitch/second for Planck)
- 4. Resonant Cold-Electron Bolometer (RCEB) for Multi-Frequency Pixels

Resonant Cold-Electron Bolometer (RCEB) with a Nanofilter by a Kinetic Inductance of the NbN strip and a Capacitance of the SIN Tunnel Junctions

L. Kuzmin, ISSTT, April 2013

NbN: λ =400 nm, b=10 nm, Lkin =140 pH for *I*=0.6 μm Q=10, Rabs=15 Ohm, ωLkin=300 Ohm @ 350 GHz, SIN: S=0.04 μm² 11:35:33

Cross-Slot Antenna with RCEB for 75 and 105 GHz

Cross-Slot Antenna - Zmuidzinas et al, 2000

CST simulations by A.Sobolev & L. Kuzmin

Preliminary frequency selection in each pixel is done by an antenna and the final selection is done by a CEB.

Lkin/sq=4π λ^2 /b /H NbN: λ =300 nm,b=10 nm, Lkin/sq=20 pH/sq, Lkin =400 pH, I=2 μm, Q=10, ρ=20 Ohm, Rabs=20 Ohm, SIN: S=0.2 μm², C1=11fF,

Spectral filtering options with a lens.

We analysed three different antenna and filter concepts for matching with the flat lens:

Sinuous antenna with RCEBs,
 Cross-Slot antenna with RCEBs

- "Seashell" Slot antenna with RCEBs.

Sinuous Antenna with RCEBs inside the antenna A. Chiginev, L, Kuzmin et al.

Sinuous antenna: DuHamel, United States Patent 4658262, 1987. R. OBrient et al, Journal of Low Temperature Physics, 151 (1). 450–463 2008.

75 GHz filters: R = 10 Ohm ; $C = 8 \times 10^{-15}$ F, $L = 557 \times 10^{-12}$ H 105 GHz filters: R = 10 Ohm; $C = 4 \times 10^{-15}$ F, $L = 557 \times 10^{-15}$ H

Advantages: Easy to combine 2-4 frequencies in wideband sinuous antenna Disadvantages:

- Overcross of microstrip lines makes it very difficult for technological realization
- Parasitic resonances due to overcross of slots

Cross-Slot Antenna with RCEBs A. Gordeeva, L. Kuzmin et al.

Cross-Slot Antenna - Zmuidzinas et al, 2000

Advantages: Easy to combine 2 frequencies in wideband cross-slot antenna <u>Disadvantages:</u> - Overcross of microstrip lines makes it very difficult for technological realization

- Parasitic resonances due to overcross of slots

"Seashell" Slot Antenna with RCEBs

L. Kuzmin, E. Matrozova, et al., (2014)

Absorption in 4-Frequency Seashell Slot Antenna with RCEBs designed for 75, 105, 135, and 165 GHz

Summary of optical/RF performance

Parameter	Sinuou Anteni	us na	Cross-S Antenn	Slot a	Seash Antenr	ell Slot na
Frequency, GHz	75	105	75	105	75	105
Bandwidth (at -3 dB), GHz	21	24	13	35	12	16.5
Bandwidth (at -10 dB), GHz			4.5	8		
Presence of parasitic resonances, GHz			40	40; 83		Parallel at 105
In-band absorption- average in -50% of bandwidth	0.85	0.84	0.81	0.8	0.84	0.84
Lens	Si, 9mm; AR-quartz 430 um					
Beam FWHM, deg	24.1	16.2	22.4	17.5	23.7	15.4
Cross-polar, dB	-17	-15	-10	-17	-16	-14.7
Beam ellipticity (frequency band), %	2	4	2	7	4.8	8
Main lobe magnitude, dB	16.7	19.9	17.6	19.3	16.8	17.1
Side lobe level, dB	-18.9	-16.5	-18.6	-22.5	-17.6	-16.4

17

Seashell-Slot Antenna with H-slots and Lumped Elements

(the idea partly is from KIDs with lumped elements)

L. Kuzmin, E. Matrozova (2015)

Seashell-Slot Antenna with H-slots and synphased excitation by MSL

19

Summary of optical/RF performance with H-Slot Seashell

Parameter	Sin An	uous tenna	Cross Anter	-Slot 1na	Seash Anter	ell Slot 1na
Frequency, GHz	75	105	75	105	75	105
Bandwidth (at -3 dB), GHz	21	24	13	35	12	16.5
In-band absorption- average in -50% of bandwidth	0.85	0.84	0.81	0.8	0.84	0.84
Lens	Si, 9mm; AR-quartz 430 um					
Beam FWHM, deg	24.1	16.2	22.4	17.5	23.7	15.4
Cross-polar, dB H-slot, synphased H-slot, MSL phased	-17	-15	-10	-17	-16 -17.7 -18	-14.7 21 -24
Beam ellipticity (frequency band), % H-slot, synphased H-slot, MSL phased	2	4	2	7	4.8 2 1	8 0.3 3
Side lobe level, dB	-18.9	-16.5	-18.6	-22.5	-17.6	-16.4

Seashell Antenna with λ - slots and Lumped C & L

Imput impedance of a double-slot antenna

Maarten Van der Vorst

х

 Δd

double-slot antenna

metal

Seashell Antenna with λ - slots

Seashell Antenna with λ - slots and Lumped C & L

Theta / Degree vs. dB

	Freq, GHz	Seashell Antenna with RCEB filtering	Seashell Antenna with RCEB filtering/ MSL
Bandwidt	75	14	8
h at -3 dB, GHz	105	21	12
Beam	75	18	7
ellipticity, %	105	3.3	3
Main lobe	75	17	15.5
magnitud e, dB	105	20	19.3
Cross-	75	-24	-29
pol, dB	105	-32	-18

Заключение

ESA - COrE, Multifrequency Systems.

- •Resonant Cold-Electron Bolometer (RCEB) the main detector with nanofilter
- 1) Sinuous Antenna impossible to insert RCEB without overcross of MSL + parasitic resonances.
- 2) Cross-Slot Antenna impossible to insert RCEB without overcross of MSL + parasitic resonances.
- 3) Seashell Antenna with RCEBs:
- Great opportunity to optimize independently different frequency bands
- The optimal pixel is a Seashell Antenna with λ slots and lumped capacitances