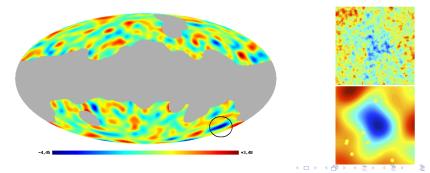
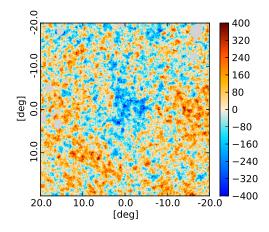
The Cold Spot in the light of PLANCK

Raúl Fernández Cobos (on behalf of the Planck Collaboration)


Instituto de Física de Cantabria

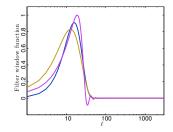
June 17^{th} , 2015

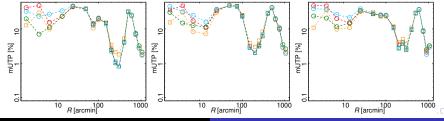
→ 3 → 4 3


The Cold Spot detection

- Detected by Vielva et al. (2004) at scales $\sim 10^\circ$ in the sky using the kurtosis estimation in the SMHW coefficients.
- It is rare in the context of the $\Lambda {\rm CDM}:$ $\sim 1\%$ looking at the area (Cruz et al., 2005).

Raúl Fernández Cobos (on behalf of the Planck Collaboration) Me

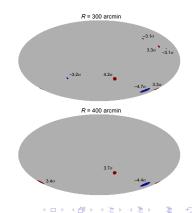

The Cold Spot seen by PLANCK



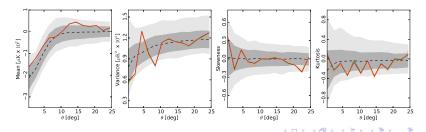
- Confirmed anomaly.
- Cold Spot analyses:
 - Excess of kurtosis.
 - Area.
 - Mean angular profile.

Multiscale analysis

- 18 scales selected using the SMHW (blue), GAUSS (yellow) and Savitzky-Golay (magenta) kernels.
- Excess of kurtosis at the Cold Spot scale.



Raúl Fernández Cobos (on behalf of the Planck Collaboration)


• Area above a given threshold, as a function of the SMHW scale: anomalously cold area on scales $\sim 10^\circ.$

	Probability [%]					
Area	Scale [arcmin]	Comm.	NILC	SEVEM	SMICA	
	S	MHW				
	200	3.8	5.1	3.7	3.8	
Cold	250	1.4	2.4	1.4	1.4	
	300	0.4	1.5	0.4	0.4	
	400	0.9	0.9	0.9	0.9	
Hot	200	2.0	2.6	1.7	1.5	
	250	2.4	3.0	2.1	2.0	
	300	4.2	5.0	4.1	3.9	
	400					

Local properties

- The background: Zhao, 2013.
 - Inconsistencies with respect to the Gaussian hypothesis.
 - Local statistics: mean, variance, skewness and kurtosis.
- Planck analysis:
 - Statistics computed within 13 concentric rings spaced in steps of $\sim 2^\circ.$
 - Simulations with a cold spot, at least, as intense as the Cold Spot from the data in the SMHW coefficients at R = 300'.

Raúl Fernández Cobos (on behalf of the Planck Collaboration)

Probabilities of obtaining values for the χ^2 statistic of the angular profiles larger than those determined from the data.

	Probability [%]				
Angular profiles	Comm.	NILC	SEVEM	SMICA	
Mean	0.9	0.8	1.0	0.9	
Variance	40.0	40.0	38.0	42.0	
Skewness	79.0	82.0	85.0	80.0	
Kurtosis	75.0	56.0	75.0	77.0	

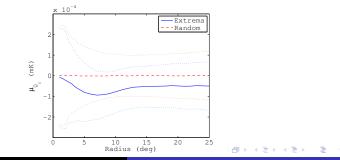
 \Rightarrow Only the mean value should be considered anomalous.

同 ト イ ヨ ト イ ヨ ト

Forecast for polarization

- What would the polarization offer to the understanding of the Cold Spot?
 - Gaussian peak: counterpart in polarization predicted by $\Lambda {\rm CDM}.~({\rm H_0})$
 - Product of the gravitational evolution of a secondary anisotropy: no expected pattern in polarization. (H_1)

.


• We employ an estimator which explores the TE cross-correlation.

Forecast for polarization

 $Q_{\rm r}$ and $U_{\rm r}$ Stokes parameters:

$$\begin{array}{rcl} Q_{\mathrm{r}}\left(\theta\right) &=& -Q\left(\theta\right)\cos\left(2\phi\right) - U\left(\theta\right)\sin\left(2\phi\right) \\ U_{\mathrm{r}}\left(\theta\right) &=& Q\left(\theta\right)\sin\left(2\phi\right) - U\left(\theta\right)\cos\left(2\phi\right) \end{array}$$

• Ideal case: noise-free experiment.

Raúl Fernández Cobos (on behalf of the Planck Collaboration)

Fisher discriminant

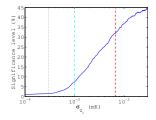
• The information of each hypothesis is represented by

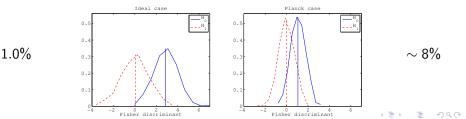
$$\begin{aligned} \xi_{\mathrm{H}_{0}}(i) &\equiv \mu_{Q_{\mathrm{r}}}(\mathbf{x}_{\mathrm{ext}}, \theta_{i}) \\ \xi_{\mathrm{H}_{1}}(i) &\equiv \mu_{Q_{\mathrm{r}}}(\mathbf{x}_{\mathrm{rnd}}, \theta_{i}) \end{aligned}$$

- $\bar{\xi}_{H_{\gamma}}$ and $C_{H_{\gamma}}$ are computed with 10⁴ simulations ($\gamma = \{0, 1\}$).
- Two sets of 1000 (representing each hypothesis, respectively) Fisher discriminant values τ_{γ} are computed combining information of both hypotheses:

$$\begin{array}{rcl} \tau_{\mathrm{H}_{0}} & = & \left(\bar{\boldsymbol{\xi}}_{\mathrm{H}_{0}} - \bar{\boldsymbol{\xi}}_{\mathrm{H}_{1}} \right)^{t} \mathbf{C}_{\mathrm{tot}}^{-1} \boldsymbol{\xi}_{\mathrm{H}_{0}} \\ \tau_{\mathrm{H}_{1}} & = & \left(\bar{\boldsymbol{\xi}}_{\mathrm{H}_{0}} - \bar{\boldsymbol{\xi}}_{\mathrm{H}_{1}} \right)^{t} \mathbf{C}_{\mathrm{tot}}^{-1} \boldsymbol{\xi}_{\mathrm{H}_{1}}, \end{array}$$

with $\mathbf{C}_{tot} = \mathbf{C}_{H_0} + \mathbf{C}_{H_1}$.


• Discrimination power between the two hypotheses: the fraction of the τ_{H_1} values that are greater than the median value of the τ_{H_0} distribution.


Forecast for polarization

• Two different cases:

- Noise-free case.
- Noise level as expected in PLANCK $(\sigma_{
 m pol} \approx 1 \mu {
 m K})$

Fernández-Cobos et al., 2013

Raúl Fernández Cobos (on behalf of the Planck Collaboration)

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between FSA and a scientific Consortium led and funded by Denmark.

Raúl Fernández Cobos (on behalf of the Planck Collaboration)