

ΙΕΕϹ

INSTITUTO DE

CIENCIAS DEL ESPACIO

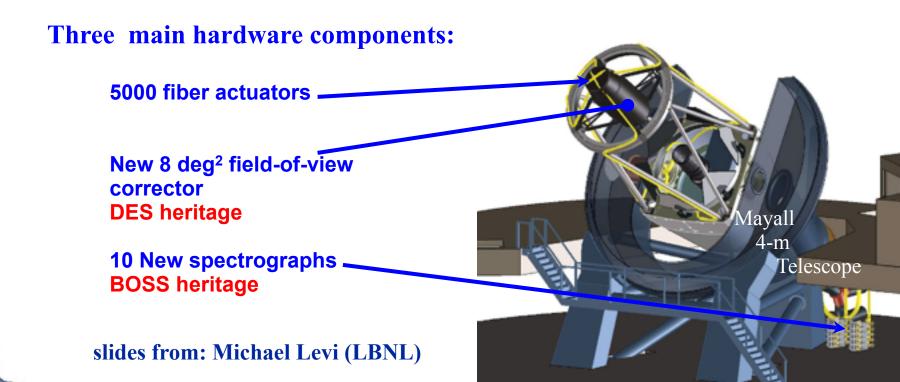
Overview of the Dark Energy Spectroscopic Instrument (DESI)

Enrique Gaztañaga for the BCN-MAD DESI group (=PAUcam)

DESI Concept

- **MS-DESI** is the Mid-Scale Dark Energy Spectroscopic Instrument
- **DESI** will be installed at the Mayall Telescope on Kitt Peak, AZ
- Kitt Peak is operated by NOAO for the NSF

corrector



2

DESI Concept

- Scale up BOSS to a massively parallel fiber-fed spectrometer with 5x more fibers, larger telescope aperture, robotic fiber positioners
- Stage-IV BAO over a broad redshift range: 0.5 < z < 1.6, 2.2 < z < 3.5
- Sky area: 14,000 square degrees
- Number of galaxy redshifts: 30 million
- Medium resolution spectroscopy, R ~ up to 5500

DESI Science Requirements

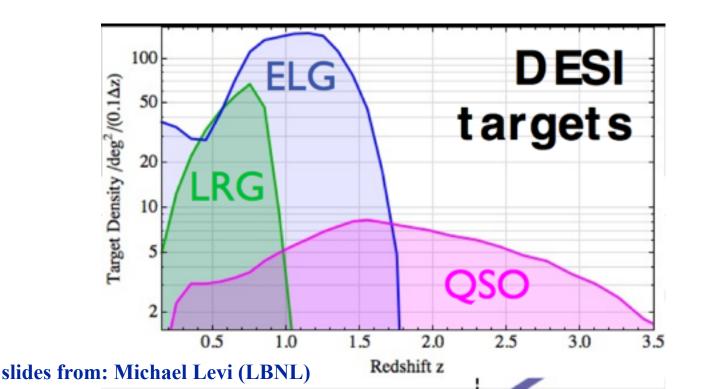
- Survey area:
 - —cover at least 9000 sq. degrees (threshold survey), with volume density of galaxies nP ~ 1
 - —baseline survey with margin: 14000 sq. degrees
- Measure the distance scale from BAO:
 - 0.28% precision from 0 < z < 1.1
 - 0.39% precision from 1.1 < z < 1.9
- Measure the Hubble Parameter to 1.05% at 1.9 < z < 3.7 from BAO
- Galaxy survey at z < 1.5 should be capable of separately determining D_A(z) and H(z) from BAO

- Gravitational growth
 - measure the growth factor to < 1% at 0.5 < z < 1.4 using redshift space distortions
- Inflation
 - constrain the spectral index of primordial perturbations and its running to < 0.4%</p>
- Neutrino Masses
 - —measure sum of neutrino masses to < 0.02 eV
- These goals do not drive the survey design or science requirements, but are achievable using the baseline survey

Science Requirements

SCIENTIFIC OBJECTIVE: PERFORM A STAGE-IV BAO SPECTROSCOPIC SURVEY

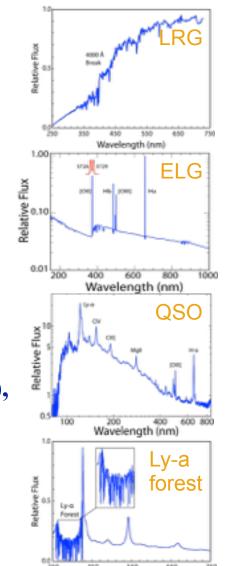
LEVEL 1 LEVEL 2 LEVEL 3 SCIENTIFIC REQUIREMENTS DATA SET REQUIREMENTS TECHNICAL REQUIREMENTS Survey area > 9000 deg² with Redshift range: Operational constraints volume density nP ~ 1 (galaxies) LRGs 0.4 < z < 1.0 ≤ 5 Years ELGs 0.6 < z < 1.6 Measure the distance scale R QSOs z < 2.1 Median seeing 1.1" (i-band) to < 0.28% for 0.0 < z < 1.1 Ly-α z > 2.1with Moffat $\beta = 3.5$ profile and < 0.39% for 1.1 < z < 1.9 Astrometric error of target Successful z object density/deg² Measure the Hubble parameter catalog ≤ 100 mas rms LRGs > 300 H to < 1% for 1.9 < z < 3.7 ELGs > 1280 QSOs > 120 Field of view > 7 deg² Systematic error < 0.16% for D. Ly-α > 50 and < 0.26% for H Fiber density < 700/deg² Number of redshifts: ≈O(24M) Operational overheads ADDITIONAL SCIENTIFIC GOALS • < 10% deadtime</p> ELG redshift accuracy ∆z < 0.0005 (1+z) rms Constrain growth factor at few with < 5% catastrophic failures Spectral range and resolution percent level up to 0.5 < z < 1.6• 360 nm $< \lambda < 555$ nm: R > 1500 ELG completeness Constrain inflation spectral > 90% for object 555 nm < λ < 656 nm: R > 3000 index and running to < 0.4% fluxes > ~8x10⁻¹⁷ erg/s/cm² 656 nm < λ < 980 nm; R > 4000 Measure the sum of neutrino


masses to $\sigma < 0.017 \text{ eV}$

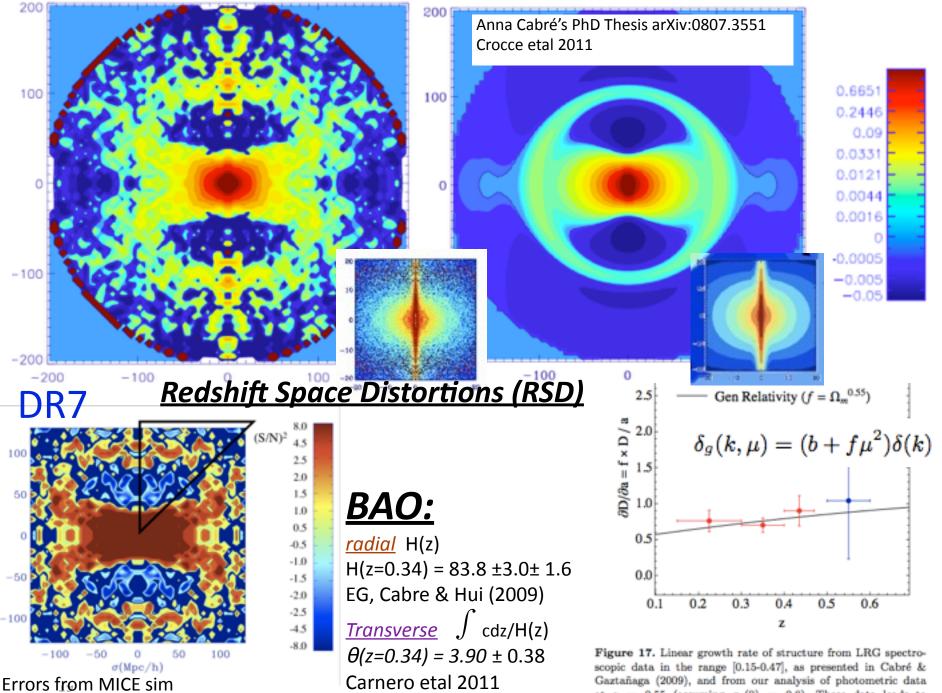
DESI Survey

- Will produce the best measurement of BAO by performing a spectroscopic survey over 14,000 sq. degrees out to redshifts of 3.5
- 4 million Luminous Red Galaxies (LRGs)
- 23 million Emission Line Galaxies (ELGs)
- 1.4 million quasars (QSO)
- 0.6 million quasars at z>2.2 for Lyman-alpha-forest

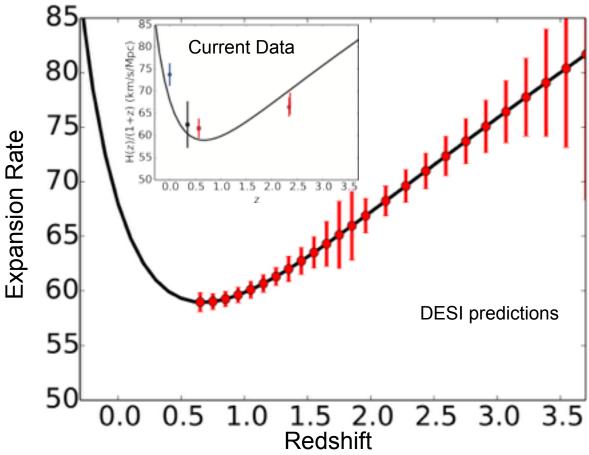
Bright Galaxy Survey


- DESI Key Project will use all of the dark time but cannot use full time when moon is too bright or other observing conditions too poor for Key Project
- A survey of 10M bright (r<19.5) galaxies over 14k square degrees will have considerable cosmological reach, complementing the Key Project in several ways:
 - Increases FOM by 23-36%(14-20K), improves z<0.4 BAO to better than 1%
 - Measures the amplitude/growth of structure at low redshift, where dark energy dominates: Multi-tracer RSD, Cluster/group counts, weak lensing cross-correlations
 - Significant synergies with imaging surveys (DES, LSST and others) including redshift calibration, host galaxy redshifts for SN, combined constraints

Survey Drives the Design


- Target spectral features in their redshift bands
 Bandpass from 360 980 nm
- Single exposure ELG measurement at S/N > 7 for 8-10 x 10⁻¹⁷ erg/sec/cm²
 - Drives throughput
 - Drives *exposure time* posit 1000sec at zenith, no extinction
- Target redshift
 - Precision 0.0005-0.0025• $(1+z) \rightarrow spectral res. 1500-2000$
 - Redshift error rate \rightarrow ELG [OII] doublet resolution > 4000
- Survey size (14000 deg²), galaxy target density (~3000/deg²), exposure times, and survey duration
 - Total number of exposures $\rightarrow \sim 10000$
 - Number of spectra per exposure $\rightarrow \sim 5000$
 - Field of view $\rightarrow \sim 8 \text{ deg}^2$

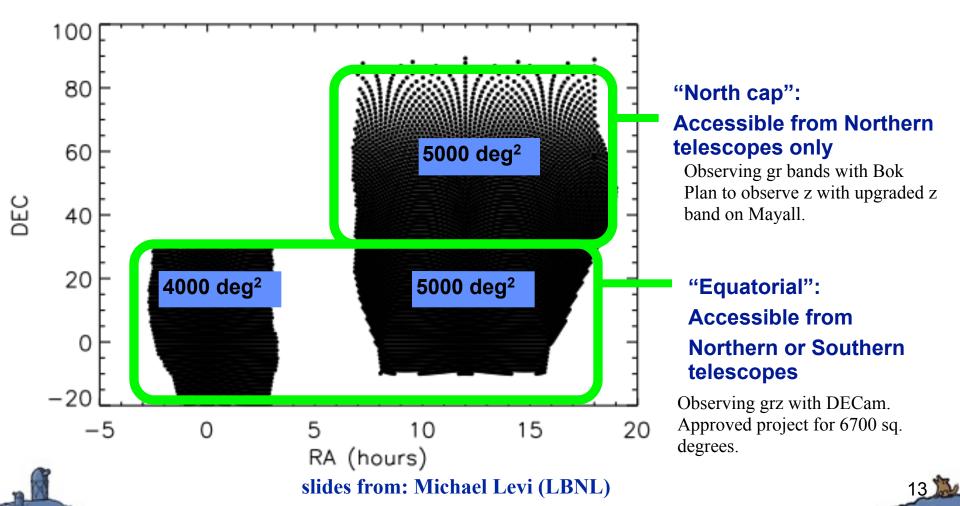
Wavelength (nm)



at z = 0.55 (assuming $\sigma_8(0) = 0.8$). These data leads to $\gamma = 0.54 \pm 0.17$ in a model where $f = \Omega_m(z)^{\gamma}$.

DESI Hubble Diagram

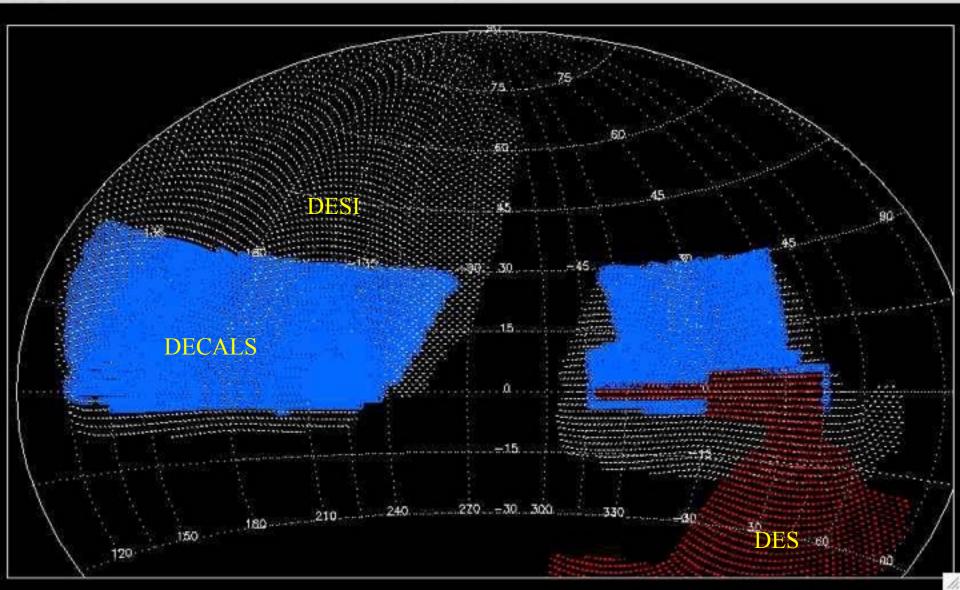
Target	z	Target density	Good z density	∆z/(1+z)	∆z/(1+z)	Bad z	Complete
type	range	deg-2	deg-2	precision	systematic	assignment	-ness
LRG	0.4-1.0	350	300	0.0005	0.0002	< 5%	> 95%
ELG	0.6-1.6	2400	1280	0.0005	0.0002	< 5%	> 90%
QSO	< 2.1	170	120	0.0025	0.0004	< 5%	> 90%
Ly-α	> 2.1	90	50	0.0025	-	< 2%	> 72%



DESI Survey Area & Imaging

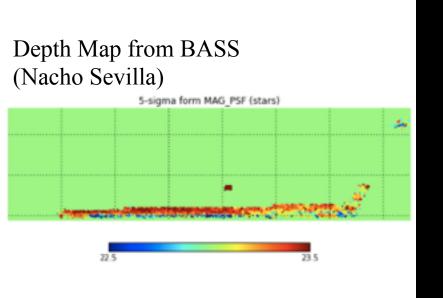
- 14,000 sq. degree footprint defined by low Galactic and atmospheric extinction
- DESI targeting requires new imaging over this area

Survey Sources


- South:
 - 6200 sq. deg. of SDSS footprint south of dec=+30 and excluding areas covered by DES, plus 500 sq. deg. from DES
 - Allocated 65 nights with Blanco/DECam in 2014B-2017A
 - g, r, z-bands
 - First public data release DR1 on March 18, 2015
- North:
 - Bok Telescope using 90Prime instrument
 - 5500 sq. deg.
 - Survey started
 - g, r-bands
 - Mayall 4m using Mosaic 3 instrument
 - Focal plane upgrade to Mosaic 1.1 instrument (from CTIO)
 - 5500 sq. deg. to start in 2016
 - z-band
- Combined imaging: g=24.0, r=23.6, z=23.0 (compare to SDSS g=22.2, r=22.2, z=20.5)

DECaLS vs DESI vs DES footprint

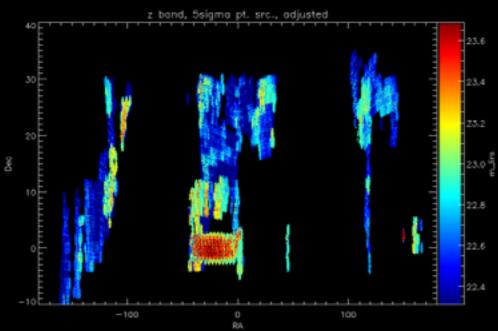
X IDL 0


DES Image Validation

People

			log	ged in as gaztanaga	Logout P	references
Wiki	Timeline	Roadmap	Browse Source	View Tickets	New Ticke	t Sean
iki: ImagingWG / In	nageValidation					Up Star
Image Valida	tion Task	Force				
Charge						Image Valida Charge
The Imaging \	alidation Wo	orking Group v	will conduct the tas	k of validating that	at the	Current Po

imaging being collected and reduced by the DESI Project, Collaboration, and its affiliates will satisfy the science requirements of the DESI Collaboration, particularly that of spectroscopic target selection.


- Enrique Gaztanaga (coordinator)
- Daniel Eisenstein, Risa Wechsler
- Eric Bell, David Schlegel
- Ray Carlberg, Nacho Sevilla
- Francisco Castander
- Arjun Dey, Yu Feng
- Doug Finkbeiner
- Josh Frieman Martin White
- Shirley Ho, Dustin Lang
- Ian McGreer Nigel Metcalfe
- Jeff Newman Ashley Ross
- Eli Rykoff Amelie Saintonge

Depth Map from DECaLS (Eli Rykoff)

Spring 20

Image Val Telecon M

DESI

- 5000 fibers in robotic actuators
- 10 fiber cable bundles
- 3.2 deg. field of view optics
- 10 spectrographs

Mayall 4m Telescope Kitt Peak Tucson, AZ

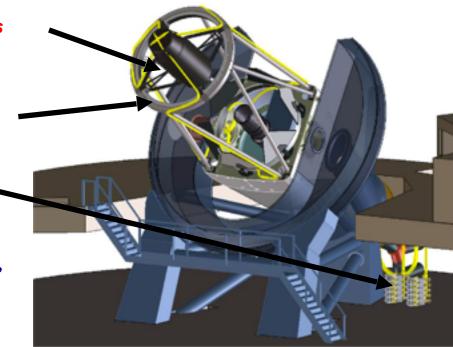
Readout & Control

DESI Expert Collaboration

Partners are experienced

BCN-MAD: Guiders (GFA) DECam PAUcam

Fermilab (U.S.): Telescope top-end + lens cell w/ UCL (U.K.): Telescope optics Dark Energy Survey top-end + optics

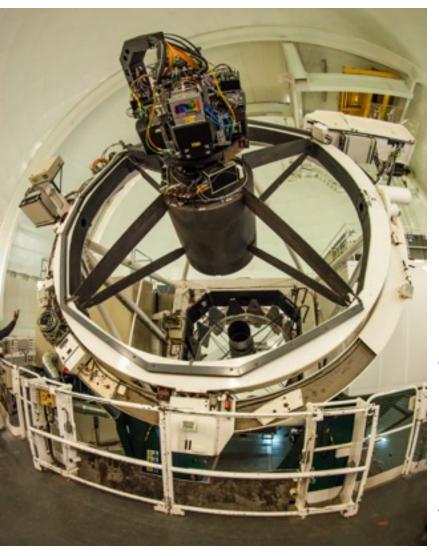

Durham: Fibers + testing FMOS + Fibers for physics exp'ts

LAM + CPPM (France): Spectrographs VIMOS spectrographs

CEA (France): Cryo systems

Megacam cryo

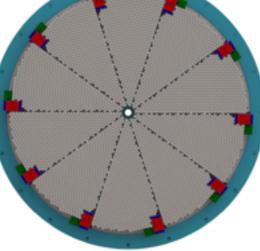
Berkeley Lab (U.S.): CCDs + electronics, optical design, project management WFIRST/JDEM optical design DES, BOSS, JDEM detectors Yale: fiber view camera /QUEST U Michigan: positioners /DES SLAC, Ohio State: data acquisition + guiding BOSS, DES, LSST NOAO: telescope interface, operations DECam



PAUCam First light

http://paucam.pic.es

The PAUcam team has also contribute to build DES, DESI and Euclid and will make a galaxy survey with PAUCam to enable the Dark Energy Science:


Photo-z calibration in DES Intrinsic galaxy alignments in EUCLID Target selection optimization for DES Novel cross-correlation techniques

10xGFA Cameras to be build by **PAUcam Team**

GFA= Guider, Focus & Alingment

19

Project Status

- The project is making great progress. Main focus keep the optics off the critical path with foundation grants (non-DOE funding)
- Procurement of C1-C4 blanks is complete. Grinding and polishing is in progress (AOS and L3-Brashear).
- Procurement of ADC blanks is in progress (Schott and Ohara) Polishing contract is being placed.
- Expect all lenses to be complete by end of 2016.

Element	Diameter (mm)	Mass (kg)	Material	Aspheric surfaces
C1	1140	201	Silica	0
C2	850	151	Silica	1
ADC1	800	102	N-BK7	0
ADC2	804	89	N-BK7	0
C3	834	84	Silica	1
C4	1034	237	Silica	0

Project Status

- Sept. 2014: Successful CD-1 review. DOE Funding profile negotiations nearly settled. Expect "advanced procurement authority" in Mid March 2015.
- DOE CD-2/3a review scheduled for July 28-30, 2015 this is the big one - nails down the design, cost and schedule.
- Spectrographs are the critical path (funding limited). Fabrication of a prototype is in progress.
- DESI installation begins Jan. 2018. Start moving the telescope with DESI installed in Oct. 2018
- On-sky commissioning will start in Jan. 2019 with 6 spectrographs, the rest arriving by July. DESI is the only instrument on the telescope
- 5 year DESI survey will start in Jan. 2020 (after a 6m science verification period)

Conclusion

- DESI builds on the long and successful experience of multiple collaborations in defining, building and executing wide area surveys to study the mystery of Dark Energy
 SDSS, BOSS, DES, PAucam
- DESI will essentially complete BAO measurements in the northern sky out to redshift of 1.5.
- Technical design of DESI is very mature, Private/non-DOE funding being used for lenses and prototype spectrograph
- Barcelona-Madrid DESI group will build 10xGFA cameras
- DESI prototype with GFA on sky:1 year! Commission Jan 2018!
- On track for on-sky commissioning <4 years from now in 2019!

Dark Energy Spectroscopic Instrument