Meeting on Fundamental Cosmology 17-19 June 2015 Santander, Spain

Cosmological perturbations of the Higgs vacuum

Antonio L. Maroto Complutense University, Madrid

in coll. with F. Prada and F. Albareti (UAM-IFT) Phys.Rev. D90 (2014) 12, 123541

Introduction

- The Higgs boson found at the LHC with $m_H \approx 125$ GeV compatible with the Standard Model Symmetry Breaking Sector (SBS)
- But the SM also predicts the existence of a Higgs field, i.e. a constant field (in time and space) with $\hat{\phi} \approx 250 \text{ GeV}$ (no independent observational confirmation yet).

Classical potential

$$V(\phi) = V_0 + \frac{1}{2}M^2\phi^2 + \frac{\lambda}{4}\phi^4$$

$$\phi(t,\mathbf{x}) = \hat{\phi} + \delta\phi(t,\mathbf{x})$$

$$\Box \phi + V'(\phi) = 0$$

$$\int \langle \delta \phi \rangle = 0$$

Quantum corrected equation of motion

$$\exists \hat{\phi} + V'(\hat{\phi}) + \frac{1}{2} V'''(\hat{\phi}) \langle \delta \phi^2 \rangle = 0.$$
$$V'_{eff}(\hat{\phi})$$

V_{eff} effective potential

Effective potential in flat space-time

$$V_{eff}(\hat{\phi}) = V(\hat{\phi}) + \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + m^2(\hat{\phi})}$$
$$V_1(\hat{\phi}) = \rho_{vac}(\hat{\phi})$$

$$V_{eff}(\hat{\phi}) = V_0 + \frac{1}{2}M^2\hat{\phi}^2 + \frac{\lambda}{4}\hat{\phi}^4 + \frac{m^4(\hat{\phi})}{64\pi^2} \left(\ln\left(\frac{m^2(\hat{\phi})}{\mu^2}\right) + C\right)$$

Coleman-Weinberg, (1973) Includes W, Z and top quark contributions

Equations in perturbed Robertson-Walker background

Spatially flat RW longitudinal gauge $ds^2 = a^2(\eta) \left\{ \left[1 + 2\Phi(\eta, \mathbf{x}) \right] d\eta^2 - \left[1 - 2\Psi(\eta, \mathbf{x}) \right] d\mathbf{x}^2 \right\}$

$$\label{eq:phi} \begin{split} \square \, \phi + V'(\phi) &= 0 \, . \end{split}$$

$$\phi(\eta, \mathbf{x}) = \hat{\phi}(\eta, \mathbf{x}) + \delta \phi(\eta, \mathbf{x}) \end{split}$$

Quantum fluctuations equation

$$\delta\phi'' + (2\mathcal{H} - \Phi' - 3\Psi')\delta\phi' - (1 + 2(\Phi + \Psi))\nabla^2\delta\phi - \vec{\nabla}\delta\phi \cdot \vec{\nabla}(\Phi - \Psi) + a^2(1 + 2\Phi)V''(\hat{\phi})\delta\phi = 0.$$

Quantization

For slowly varying background fields compared to the frequency of quantum fluctuations. i.e $\omega^2 \gg \mathcal{H}^2$ and $\omega^2 \gg \{\nabla^2 \Phi, \nabla^2 \Psi\}$ we can work in the adiabatic approximation

Canonical quantization
$$\delta\phi(\eta, \mathbf{x}) = \int d^3 \mathbf{k} \left(a_{\mathbf{k}} \delta\phi_k(\eta, \mathbf{x}) + a_{\mathbf{k}}^{\dagger} \delta\phi_k^*(\eta, \mathbf{x}) \right)$$

Effective potential in perturbed RW background

$$V_1 = \frac{1}{2} \int dm^2 \langle 0|\delta\phi^2(\eta, \mathbf{x})|0\rangle$$

In dimensional regularization:

- Same divergences as in flat space-time
- Metric perturbations only contribute to the finite (non-local) part

$$V_{eff}(\hat{\phi}) = V(\hat{\phi}) + \frac{m^4(\hat{\phi})}{64\pi^2} \ln\left(\frac{m^2(\hat{\phi})}{\mu^2}\right) + \frac{m^4(\hat{\phi})}{16\pi^2} (H_{\Phi}(\eta, \mathbf{x}) + H_{\Psi}(\eta, \mathbf{x}))$$

$$H_{\Phi}(\eta, \mathbf{p}) = -\left(\frac{1}{2} + \frac{1}{2}\cos(p\eta) - \frac{\sin(p\eta)}{p\eta}\right)\Phi(\mathbf{p}) \longrightarrow 0$$

$$p\eta \to 0$$

$$H_{\Psi}(\eta, \mathbf{p}) = \left(\frac{1}{2} - \frac{1}{2}\cos(p\eta)\right)\Psi(\mathbf{p}) \longrightarrow 0$$

Static background

Higgs vacuum expectation value

Higgs fluctuations power spectrum and dispersion

Phenomenological consequences

Local constraints

Atomic clocks on Earth

$$\lesssim 10^{-16}$$
$$\lesssim 10^{-8}$$

Milky Way molecular clouds

Uzan, 2010

Limits on variations of the electron to proton mass ratio

spectroscopy with molecular absortion lines

		x 10 ⁻⁶			
Object	\mathbf{Z}	$\Delta \mu / \mu$	Method	Ref.	
B0218+357	0.685	0.74 ± 0.89	$NH_3/HCO^+/HCN$	[34]	
B0218+357	0.685	-0.35 ± 0.12	$NH_3/CS/H_2CO$	[35]	
PKS1830-211	0.886	0.08 ± 0.47	NH_3/HC_3N	[36]	
PKS1830-211	0.886	-1.2 ± 4.5	CH_3NH_2	[37]	
PKS1830-211	0.886	-2.04 ± 0.74	NH_3	[38]	/
PKS1830-211	0.886	-0.10 ± 0.13	CH_3OH	<u>[39</u>]	(4
J2123-005	2.059	8.5 ± 4.2	H_2/HD (VLT)	[40]	(
J2123-005	2.059	5.6 ± 6.2	H_2/HD (Keck)	[41]	,
HE0027-1836	2.402	-7.6 ± 10.2	H_2	[7]	(
Q2348-011	2.426	-6.8 ± 27.8	H_2	[42]	
Q0405-443	2.597	10.1 ± 6.2	H_2	[43]	
J0643-504	2.659	7.4 ± 6.7	H_2	[12]	
Q0528-250	2.811	0.3 ± 3.7	H_2/HD	[44]	
Q0347-383	3.025	2.1 ± 6.0	H_2	<u>[45]</u>	M.
J1443+2724	4.224	-9.5 ± 7.6	H_2	<u>[13]</u>	arک

$$\left(\frac{\Delta\mu}{\mu}\right)_{Low,wm} = -0.24 \pm 0.09$$

x 10⁻⁶

$$\left(\frac{\Delta\mu}{\mu}\right)_{High,wm} = 3.4 \pm 2.0 \,,$$

M.C. Ferreira and C.J.A.P. Martins, arXiv:1506.0355

Conclusions

- We have calculated the Higgs one-loop effective potential in a perturbed Robertson-Walker background using the adiabatic vacuum of comoving observers
- Using dimensional regularization we have obtained the contribution from metric perturbations to the finite part of the effective potential.
- Space-time variations in the Higgs VEV are generated on sub-Hubble scales with amplitudes in the range $\Delta \phi / \phi \approx 10^{-7}$.
- Variations in the Higgs VEV imply variations in the electron to proton mass ratio, just below the present sensitivity range of spectroscopic observations of redshifted molecular lines.