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1. Motivations

Clusters of galaxies are expected to act as the most powerful lenses in the 
universe.!

Massive and/or compact clusters at 0.2 ≲ zlens ≲ 0.4 (zs ≳ 1.0)!
!

The abundance of strong lensing events depends on cosmology through:!
the angular-diameter distances of the lens and the source!
the structure formation (given that the mass function of dark matter halos and 
the internal properties of the lenses are related to the cosmological 
parameters)!

!
Strong gravitational lensing by clusters of galaxies is one of the most 
important test of the cosmological model:!

it is extremely sensitive to the properties of the clusters cores!
it probes the rarest high density peaks in the universe
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Previous attempts of using strong lensing statistics as a cosmological tool have 
produced controversial results.!
!
The observed distribution of Einstein radii is much larger than the one predicted by 
analytical models within the ΛCDM model (Bartelmann et al. 1998).!
!

Arc statistics problem!
!

!

1. Motivations
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Arc statistics problem!
Some galaxy clusters have very extended critical lines whose abundances 
can hardly be reproduced by cluster models in the framework of a ΛCDM 
cosmology (Broadhurst & Barkana, 2008; Tasitsiomi et al., 2004)!

1. Motivations
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Arc statistics problem!
The observed distribution of Einstein radii is much larger than the one 
predicted by analytical models within the ΛCDM model (Zitrin et al., 2012)!

1. Motivations
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Figure 7. Cumulative Einstein radius distribution from '10,000
SDSS clusters (0.1 < z < 0.55). The cumulative distribution, and
its upper and lower 1� limits, are shown in blue, red, and green
solid lines, respectively. Also plotted is the distribution predicted
by the semi-analytic calculation of Oguri & Blandford (2009),
normalised to the e↵ective sky area of our sample (black aster-
isks, including errors). The two distributions disagree in two main
aspects: there is a ⇠ 1 � 2 orders-of-magnitude number discrep-
ancy between them, and in addition, the two distributions have
di↵erent slopes. The origin of the discrepancy is not clear and will
be investigated elsewhere, although it may be as a result of dif-
ferent mass limit, and the choice of concentration-mass relation
and mass function used in the semi analytic calculation. Corre-
spondingly, we find a higher abundance of large ✓e clusters than
predicted by the semi-analytic calculation. Our analysis yields
⇠ 40 candidates with ✓e > 4000 (zs = 2), with a maximum of
✓e ' 69±1200 (zs = 2) for the most massive cluster. Interestingly,
this value is in agreement with the estimate by Oguri & Bland-
ford (2000) for the largest Einstein radius. For more details see
§3.

structures are merged to form extended critical curves (e.g.,
Torri et al., 2004, Dalal, Holder, & Hennawi 2004). On the
other hand, at a lower redshift, more concentrated clusters
are those yielding larger Einstein radii, as there is more mass
in the centre enhancing the critical area (see also §3.3).

The blind analysis performed here yielded initially 69
candidates with ✓e > 4000 (zs = 2), many coincident with
various Abell or MACS clusters. We visually inspect each
of these clusters and find that some are boosted by various
e↵ects detailed below (we omit these clusters from our fur-
ther analysis), but infer that at least about half of these are
most likely real giant-lens candidates, with a maximum of
✓e ' 69± 1200 (zs = 2) for the most massive candidate. We
direct the reader to works by Hennawi et al. (2007a) and
Oguri & Blandford (2009) which have investigated in detail
the Einstein radius abundance on various scales, based on
simulations and ⇤CDM expectations, and taking into ac-
count triaxialities which induce a prominent lensing bias.

Our realistic, observationally-based results free from
lensing bias, are compared to some such expectations ex-
plicitly in Figure 7, where we plot the cumulative distri-

Figure 8. To assess the di↵erence from the semi-analytic expec-
tation by Oguri & Blandford (2009; see also Figure 7), we com-
pare the width of the tails for ✓e > 1000, which is the lower limit
taken in their calculation. The histogram shows the results from
1851 SDSS clusters following our analysis; the filled-circles curve
shows the all-sky distribution from Oguri & Blandford (2009),
and the open-circles curve shows the same distribution normalised
to the same sky area as our distribution. Both distributions are
(semi) log-normal although with two main di↵erences. The Oguri
& Blandford (2009) distribution has a width of � = 0.1448 (in
Log(✓e)), while our distribution shows a slower (or wider) de-
crease, with � = 0.2436. Also, the overall number of clusters in
their analysis for the same sky area, is much lower. For more
details see also Figure 7 and §3.

bution of clusters above each radius with the expected 1�
errors, propagated from the errors on the best-fitting pa-
rameters as described in §3.2. Note, the lower limit shifts
the maximal Einstein radius from ✓e ' 6900 to ✓e ⇠ 5700

(zs = 2), close to that of the largest known lens, MACS
J0717.5+3745 (Zitrin et al. 2009a). We note that Oguri &
Blandford (2009) who examined in detail the Einstein ra-
dius distribution based on semi-analytic expectations, have
derived maximal Einstein radius values of ⇠ 6000, but these
as shown in their work are very susceptible to the cosmolog-
ical parameters in general and to �8 in particular, and can
reach (within the 3� confidence) values that are nearly twice
as high. Their expected distribution, scaled to the same sky
area as our sample and with WMAP7 parameters (Komatsu
et al. 2011), is overplotted in Figure 7. Aside for an agree-
ment between their expected largest Einstein radius and the
largest lenses found in our analysis, the two cumulative dis-
tributions clearly disagree. Although normalised to the same
e↵ective sky area, there is a ⇠ 1 order-of-magnitude num-
ber di↵erence for small Einstein radii, which reaches a ⇠ 2
orders-of-magnitude di↵erence for higher Einstein radii, so
that in addition, the two distributions have also di↵erent
slopes. The origin of the discrepancy is not clear, but part of
the di↵erence may be due to a di↵erent (lower) mass limit
probed by the two methods. In addition, the e↵ect of the
concentration-mass (c � M) relation and the chosen mass
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Over-concentration problem!
Few clusters, for which high quality strong and weak lensing data became 
available, have concentrations which are way too large compared to numerical 
expectations (Broadhurst et al., 2008; Zitrin et al., 2009)

1. Motivations
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The origin of these discrepancies is unclear and may be produced by a variety of 
effects:!
!

Cosmological abundance of clusters!
Shapes of dark matter potential wells!
Physics within the clusters in simulations !
Limitations of semi-analytical approaches!
- projection effects: cluster triaxiality, substructures,…!
- cluster mergers (increasing lensing efficiency in ∼10%, Redlich et al. 2014)

1. Motivations
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While the abundance of massive clusters appear to be consistent with other 
observables...!
Using the state-of-the-art MUSIC dataset of resimulated clusters:!

We address the issues of numerical simulations and dark matter potential on 
cluster-mass scales (triaxiality and substructures)!
We build up a semi-analytical model to estimate the distribution of Einstein 
radii in the Universe within the ΛCDM cosmological model!
!

MAPLENS (MAdrid-Paris-LENsing-Semianalytics)!
!

We present predictions obtained with MAPLENS on the distribution of Einstein 
radii and the c-M relation, considering full-sky coverage!
We compare our results with recent observational data (SDSS, SGAS and 
CLASH)

2. Objetives
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MUSIC-MD clusters are free from contamination of low resolution particles!
MUSIC-MD clusters are distinct objects (i.e. halos which are not subhalos of 
more massive halos)!
We analyzed the non-radiative run of MUSIC-MD!

We included 1419 cluster-size halos with mass above Mmin = 2 × 1014 h−1M⊙!

We selected four snapshots at z = (0.250, 0.333, 0.429, 0.667)!
In order to increase the statistics and to take into account projections effects 
we studied each halo under 500 random line-of-sight!
We investigated a total of 1419x500 (~7x105) projections!
MUSIC-MD allow us to characterize mass distributions down to ~15 kpc
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3. MUSIC-MultiDark resimulated clusters
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3. MUSIC-MultiDark resimulated clusters

~24% strong lenses>7x105 lens planes

1419 galaxy clusters
~44% unrelaxed clusters



4. Lensing properties of the MUSIC-MD clusters

We examined the shapes of both their density and surface density profiles 
by fitting them with a NFW model:!

!
!
!
!

We derived the c-M relations from the NFW fits and investigated their 
evolution with redshift and halo relaxation!
We also produce two-dimensional convergence and shear maps by means 
of ray-tracing techniques (Skylens, Meneghetti et al. 2010)!
We derived the properties characterizing the tangential critical lines, such as 
its ellipticity and the effective Einstein radius!
The fitting procedure is based on the assumption that mass is spherically 
distributed in clusters, while the ray-tracing accounts for the two-dimensional 
mass distribution of the clusters, so the difference between the two 
independent procedures could give us hints on the projection effects
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Equivalent Einstein radius from the fitting procedure

θE ≡ θNFW
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4. Lensing properties of the MUSIC-MD clusters

Critical surface mass density!
~10,000x ρcrit

κ 
(R

)

0.1

1

R(h−1kpc)

1
−
κ N

FW
 / 
κ

100 1000
-0.4

-0.2

0.0

0.2

0.4



Effective Einstein radius from the ray-tracing procedure
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4. Lensing properties of the MUSIC-MD clusters

Area enclosed by the 
tangential critical line

θE!

θNFW!
Ellipse fit!



5. MAPLENS	



MAPLENS is based on the analysis of the MUSIC-MD simulated clusters !
Semi-analytic model to infer the distribution of Einstein radii from a sample 
of dark matter halos!
By comparing the equivalent Einstein radii and the effective Einstein radius, we 
incorporate the projection effects (triaxiality and presence of substructures) 
to MAPLENS with the aim to recover more realistic estimates of the Einstein 
radii distribution!
MAPLENS derives the lensing properties of cluster-size halos in terms of 
kernel density estimates, once the mass and the redshift of each halo are 
known!
Source redshift is fixed at zs = 2.0!
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Non-parametric way to estimate the probability density function of a random 
variable directly from the data!
It do not assumes a particular form for the underlying distribution!
For a d-variate random sample (X1 , X2 , . . . , Xn) drawn from a density f, the 
kernel density estimate is defined by:
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where x = (x1, x2,…, xd)t and Xi = (Xi1, Xi2,…, Xid)t with i = 1,2,…,n!

!
K(x) is the kernel which is a symmetric probability density function and H is the 
bandwidth matrix

5. MAPLENS	
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We evaluated the 3D-kernel density estimates using a Gaussian kernel!
We computed two different 3D-kernel density estimates from the analysis of 
the 500 projections of each cluster in the MUSIC-MD dataset!
- the first kernel density estimate contains the information derived from the 

fits to the surface density profiles with variates:!
!

x = (M200, M2D, c2D)!
!

- the second kernel includes the lensing properties with variates:!
!

x = (θNFW, θE, εθ)

5. MAPLENS	
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Given a hypothetical halo with redshift z and mass M200, we estimate the 
projected mass and concentration (M2D and c2D) from the first kernel density 
estimate by means of Monte Carlo (MC) sampling with the conditional 
probabilities:

We compute the equivalent Einstein radius from the sampled M2D and c2D as 
follows:

We infer the effective Einstein radius and the ellipticity of the critical line 

(εθ and θE) from the second kernel density estimate with the conditional 
probabilities:

p (M2D⎮M200)!
p (c2D⎮M200, M2D)

θE ≡ θNFW

p (εθ⎮θNFW)!
p (θE⎮θNFW, εθ)

5. MAPLENS	
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We extend our predictions on the Einstein radii distribution over a realization of 
dark matter halos generated with the Tinker et al. 2008 mass function, 
considering full-sky coverage!

We run 1000 all-sky realizations of dark matter haloes with M200 ≥ 2 × 1014 h
−1M⊙ within 0.1 < z < 1.0!

We infer the all-sky Einstein radii distribution with MAPLENS!
We propose as simple fitting formula to the all-sky Einstein radii distribution 
and compare the results with 10,000 SDSS clusters!
We also derive c-M relations for galaxy clusters and compare them with 
recent observational data from SGAS and CLASH.

6. All-sky distribution function of Einstein radii	





6. All-sky distribution function of Einstein radii	
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Universal distribution function of Einstein radii

The relative error in the number of lenses is constrain within ≲20% for lenses 
with θE ≳10 arcsec, and it is reduced to ≲10% for lenses with θE ≳25 arcsec!
The measured dispersion in the number of Einstein radii is
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6. All-sky distribution function of Einstein radii	





7. Comparison with observations:	


the SDSS clusters
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Zitrin et al. 2012 presented the results from the strong lensing modeling of 
10,000 SDSS clusters in the range 0.11 < z < 0.55!
Light distribution observed in galaxy clusters generally traces their mass 
distribution!
Calibration of the mass-to-light ratio is based on a subsample of ten well-
studied SDSS galaxy clusters that were covered by high-quality HST images!
For a direct comparison, we compute the distribution of Einstein radii produced 
by clusters within 0.10 ≤ z ≤ 0.55



7. Comparison with observations:	


the SDSS clusters
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7. Comparison with observations:	


the CLASH sample
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Merten et al. 2015 performed a lensing analysis of 19 X-ray selected galaxy 
clusters from the CLASH cluster sample!
Mass and concentrations derived by best-fitting the surface mass profiles of 
the clusters to a NFW model!
Our theoretical c−M−z relations are derived by means of nonlinear least-
square fitting of:

In Meneghetti et al 2014 we found that X-ray selected CLASH clusters are 
frequently efficient strong lenses



7. Comparison with observations:	


the CLASH sample
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7. Comparison with observations:	


the SGAS clusters
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Oguri et al. 2012 combined strong and weak lensing analysis for a subsample 
of 28 clusters from the Sloan Giant Arcs Survey (SGAS) in the redshift range 
0.27 ≲ z ≲ 0.68!

Sereno et al. 2015 re-analyzed the shear profiles of these 28 clusters with the 
additional constraints on the effective Einstein radii!
For a direct comparison, we construct a θE-selected sample (with θE ≥ 3 
arcsec) within 0.25 ≤ z ≤ 0.70!

For each all-sky realization, we propose a fitting function to the c−M−θE 
relation as follows:



7. Comparison with observations:	


the SGAS clusters
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8. Conclusions

MAPLENS: full cosmological distribution of Einstein radii combining halo 
abundance + Monte Carlo samples! !
The sampled Einstein radii distributions recovered with MAPLENS account 
for the projection effects! !
The SGAS sample, although slightly over-concentrated, is consistent within 
errors with the theoretical predictions of MAPLENS for a strong lensing 
selected sample of halos in the redshift range 0.25 ≤ z ≤ 0.70!

We did not find any significant disagreement between the observed c − M 
relation for the CLASH sample and the theoretical relations of MAPLENS, 
after accounting for projections and selection effects (⟨cobs/csim⟩ = 0.87 ± 
0.15)!
We did not find statistical evidences for claiming that the Einstein radii 
distribution of the 10000 SDSS clusters exceed the theoretical expectations of 
the ΛCDM cosmological model!
Given the large uncertainties of the method used by Zitrin et al. 2012, it could 
be interesting to carefully re-analyze the SDSS sample, particularly focusing 
on the strongest lenses in their sample.
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After accounting for projection and selection effects!
Arc statistics and over-concentration problems!

can be mostly solved!
!

Strong lensing as cosmological probes!
c-M relation to study cosmological parameters



MultiDark simulation (Prada et al. 2011)!
!

- Dark-matter only with WMAP7 cosmology!
(ΩΛ = 0.73, Ωm = 0.27, Ωm = 0.0469, σ8 = 0.82, h = 0.7, n=0.95)!

- 20483 particles!
- 1 h-1Gpc cubic box!

!
MUSIC-MultiDark resimulated clusters (Sembolini et al. 2013)!

!
- Mass limited sample selected from the MultiDark simulation !
- 282 more massive objects (>1015h-1M⊙) resimulated!
- Radiative and non-radiative physics!
- 8x more resolution (mdm = 9.01 x 108 h-1M⊙ ; mgas = 1.09 x 108 h-1M⊙)!
- Gravitational softening: 6 h-1kpc!

!
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