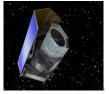
Subhalo abundance matching and assembly bias Jonás Chaves Montero CEFCA THE EAGLE PROJECT

Motivation: Wide-field galaxy surveys (I)

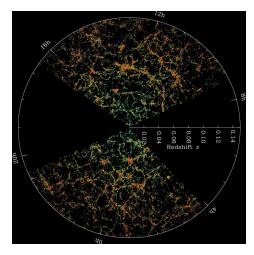
Ongoing surveys:

- BOSS.
- ► WiggleZ.
- DES.



Future surveys:

- DESI
- ► J-PAS.
- ► LSST.
- ► Euclid.



Motivation: Wide-field galaxy surveys (II)

Cosmological information encoded on the clustering of galaxies.

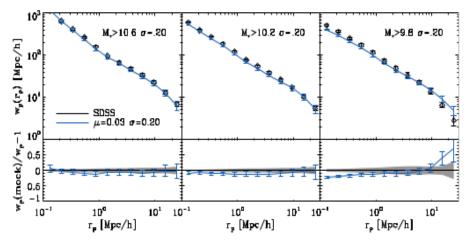
Credit: M. Blanton and the Sloan Digital Sky Survey

N-body simulations

Hydrodynamical simulations:

- Fully treatment of the baryonic physics.
- Time expensive.
- Smaller volumes (non-linear scales).

Dark matter only simulations:


- Just dark matter.
- Need less time.
- Larger volumes (linear scales).

Different ways to introduce galaxies in DM-only simulations:

- Semi-Analytical models.
- Halo Occupation Distribution (HOD).
- Sub-Halo Abundance Matching (SHAM).

SHAM: Previous results

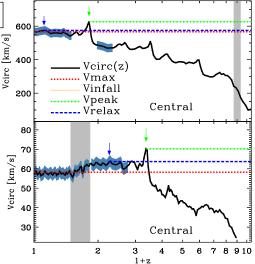
SHAM predicts the clustering correctly (using free parameters).

Reddick et al. 2013

EAGLE (Schaye et al. 2015; Grain et al. 2015)

EAGLE, hydrodynamical state-of-the-art simulation:

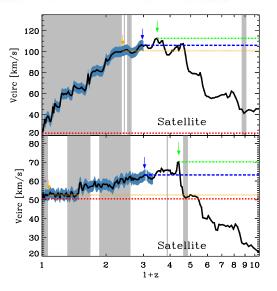
- 1504³ gas particles and the same number of DM particles.
- Periodic box of 100 Mpc on a side.
- Metal-dependent radiative cooling and photo-heating.
- Chemodynamics.
- Gas accretion onto SMBHs.
- Stellar and AGN feedback.


Dark matter only version of EAGLE (DMO):

- ▶ 1504³ DM particles.
- Same volume, initial conditions, and cosmology.
- More than the 95% of the haloes can be linked between EAGLE and DMO.

Subhalo proxies for stellar mass (I)

$$V_{
m circ}(z) = \max\left[\sqrt{
m GM(z, < r)/r}
ight]$$

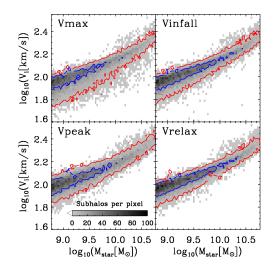

- V_{max}: maximum circular velocity at the present time.
- V_{infall}: maximum circular velocity at the last time a subhalo was a central.
- V_{peak}: the maximum circular velocity that a subhalo has reached.

Subhalo proxies for stellar mass (II)

Some issues:

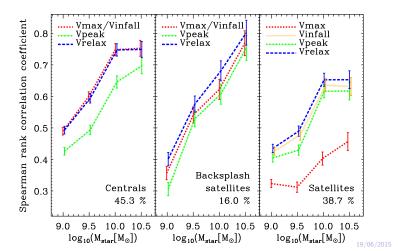
- V_{max}: tidal heating.
- V_{infall}: tidal heating before infall for satellites.
- V_{peak}: spurious values due to mergers.

<u>Vrelax</u>: the maximum circular velocity that a subhalo has reached during the periods in which it satisfied a relaxation criterion.

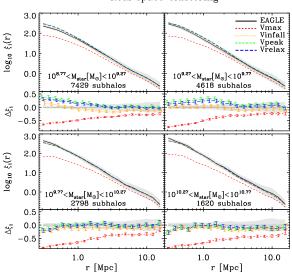

Relaxation criterion at $z_{
m i}$: $t_{
m form} > t_{
m cross}$, where

$$t_{
m cross} = rac{2\,R_{200}}{V_{200}}$$
 and

$$t_{\mathrm{form}} = t_{\mathrm{int}}(z_{0.75}) - t_{\mathrm{int}}(z_{\mathrm{i}}).$$

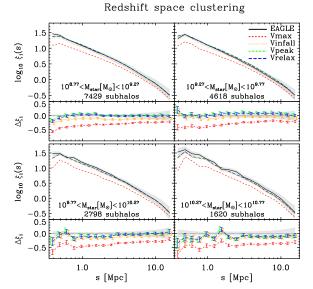

Predicting $M_{\rm star}$ (I)

Relation between $M_{\rm star}$ of EAGLE galaxies and SHAM parameters for the corresponding DMO subhaloes.

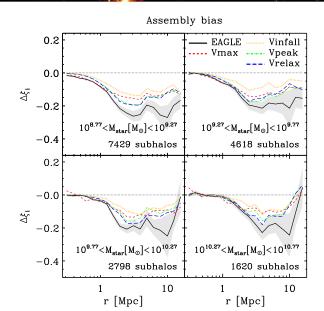


Predicting $M_{\rm star}$ (II)

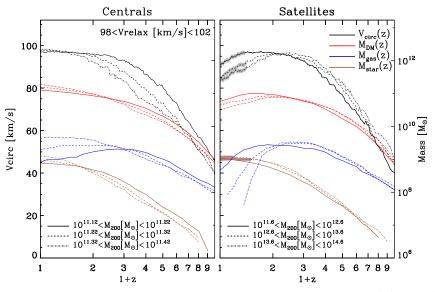
The Spearman rank correlation coefficient between the $M_{\rm star}$ of EAGLE galaxies and SHAM parameters for the corresponding DMO subhaloes.



Real-space clustering


Real space clustering

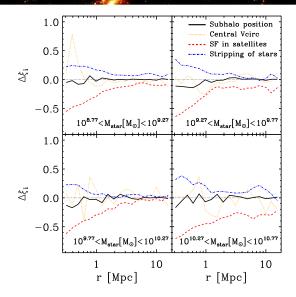
Redshift-space clustering


19/06/2015 13 of

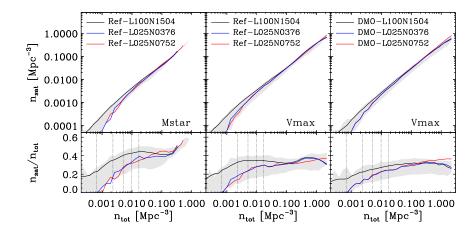
Assembly bias

19/06/2015 14 of 17

Why fails?


Summary

- ▶ Physical relation between the *M*_{star} and the SHAM parameters. *V*_{relax} exhibits the strongest correlation with *M*_{star}.
- ▶ Using $V_{\rm relax}$ as SHAM parameter in DMO we recover the same clustering as in EAGLE on scales 2 17 Mpc. The clustering is overpredicted ~ 25% on scales below 2 Mpc for low mass galaxies.
- Detection of assembly bias in EAGLE. It increases the clustering $\sim 25\%$ on scales 2-10 Mpc. $V_{\rm relax}$ underpredicts its strength $\sim 15\%$.
- Dependence of galaxy properties with halo mass at a given V_{relax}.


That's all Folks!!

THE EAGLE PROJECT

Why fails?

